Alternatives Analysis

March 8, 2019

Peck Road at Bricher Road

Cities of Geneva and St Charles, Illinois

Prepared For:

Kane County Division of Transportation

Prepared By:

Crawford, Murphy & Tilly, Inc.

Contents

1.		Introduction	1
	A.	Location	1
	Β.	Existing Conditions	2
2.		Alternatives	5
	A.	No Build Condition	5
	Β.	Alternative 1 – Traffic Signals	5
	C.	Alternative 2 – Traffic Signals and Profile Modifications	8
	D.	Alternative 3 – Single Lane Roundabout	9
3.		Capacity	10
	A.	Existing	10
	Β.	No Build	10
	C.	AWSC	10
	D.	Alternatives 1 and 2	11
	E.	Alternative 3	12
4.		Safety	12
	A.	Crash Analysis	12
	Β.	Sight Distance Analysis	13
5.		Bicycle and Pedestrian	14
6.		Construction Staging and Maintenance of Traffic	15
7.		Environmental Impacts	15
8.		Property Impacts	16
9.		Utility Impacts	16
1().	Schedule	17
11	L.	Project Cost	17
12	2.	Summary	18
13	3.	Conclusions	19
	A.	Purpose and Need	19
	В.	Selection of Preferred Alternative	19
	C.	Value Considerations	20

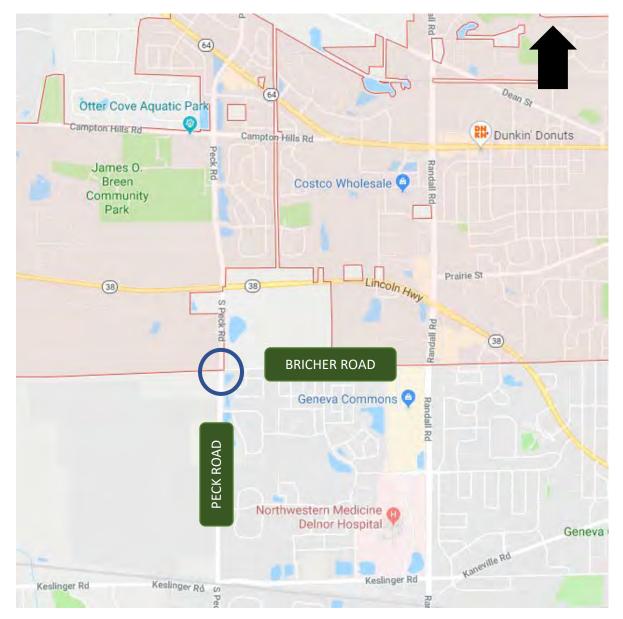
Appendix

Appendix A	Capacity Outputs
Appendix B	Crash Memorandum
Appendix C	Sight Distance Exhibits
Appendix D	Alternative Exhibits
Appendix E	Alternative Cost Exhibits
Appendix F	Turn Templates for Traditional Intersection

List of Figures

1
2
3
4
4
5
6
7
7
8
8
9
12
13
14
14
15
16

List of Tables


Table 1 – Two-Way Stop Control Existing 2018 Capacity Analysis	10
Table 2 – Two-Way Stop Control 2040 Capacity Analysis	
Table 3 – All-Way Stop Control 2018 Capacity Analysis	11
Table 4 – Traffic Signal 2040 Capacity Analysis	
Table 5 – Roundabout 2040 Capacity Analysis	
Table 6 – Alternative Cost Summary	
Table 7 – Alternative Summary Matrix	
Table 8 – Alternative Selection Matrix	

1. Introduction

A. Location

The intersection of Peck Road at Bricher Road is in the eastern central portion of Kane County in St Charles and Geneva Townships. Peck Road runs in the north-south direction and Bricher Road runs in the east-west direction. See Figure 1. The intersection is split between St Charles Township, north of Bricher Road, and Geneva Township, south of Bricher Road.

Figure 1 – Location Map

B. Existing Conditions

The northwest quadrant of the intersection is incorporated City of St Charles and is zoned public land. See Figure 2. The property is James O. Breen Community Park South and is owned by the St Charles Park District. The southeast quadrant of the intersection is incorporated City of Geneva and is zoned residential. The northeast and southwet quadrants are unincorporated. The northeast quadrant is part of the Kane County judicial center complex. The southwest is the Community Gardens as an adjacent component of the overall Prairie Green Preserve, a public owned prairie/wetland restoration and passive recreation site that is a joint project between the Geneva Park District and the Forest Preserve District of Kane County.

The existing intersection of Peck Road at Bricher Road is a three-leg intersection which has a minor park district entrance as the fourth leg driveway of the intersection. Peck Road, a minor arterial, is under the free flow condition. Bricher Road, a major collector, and the entrance are under stop control. Peck Road is under the jurisdiction of Kane County. Bricher Road is under the jurisdiction of the City of Geneva. The park district entrance serves a garden plot. Parking for the soccer fields is located north of the soccer fields at the District 303 Transportation Yard.

Figure 2 - Existing Adjacent Land Use

Peck Road has northbound and southbound left turn lanes as well as a northbound right turn lane. See Figure 3. Bricher Road has an exclusive westbound left turn lane and a shared westbound thru/right lane. The park district entrance, the eastbound approach, has a single lane serving left, thru, and right turning movements.

A bike path runs along the east side of Peck Road. The Mid County Trail crosses the south and east legs of this intersection. There are no other crosswalks at the intersection.

Figure 4 – Photo at intersection looking east at Bricher Road

Figure 5 – Photo at intersection looking south at Peck Road

Figure 6 - Photo at intersection looking north at Peck Road

2. Alternatives

A. No Build Condition

In the no-build condition, the existing geometry would remain the same. Traffic is expected to increase by approximately 20%, or 0.83% per year, on the north leg of Peck Road, from 10,500 ADT in the year 2018 to 12,600 ADT in the year 2040. Traffic is expected to increase by approximately 20%, or 0.83% per year on the south leg of Peck Road, from 12,160 ADT in the year 2018 to 14,600 ADT in the year 2040. Traffic on Bricher Road is expected to increase by approximately 20%, or 0.83% per year, from 5500 ADT in the year 2018 to 6600 ADT in the year 2040. These traffic projections were provided from the Chicago Metropolitan Agency for Planning. No increase in traffic was assumed for the park district entrance.

B. Alternative 1 – Traffic Signals

The first alternative adds traffic signals to the intersection to improve the vehicular capacity of the intersection and improve pedestrian safety. This alternative also improves geometrics at the intersection to fit the design vehicle, avoid maintenance issues, further improve pedestrian safety.

The scope of improvements generally includes extending the southbound left turn lane and westbound left turn lane. The pavement scope is limited to resurfacing within the geometric and pavement marking modifications. The construction limits are generally 265 feet south of Bricher Road to 540 feet north of Bricher Road along Peck Road for a total distance of 805 feet (0.15 miles) and from the intersection of Peck Road to approximately 540 feet east of Peck Road along Bricher Road. The total improvement length is 1345 feet (0.25 miles).

Figure 7 – Alternative 1 Plan View

The drainage system remains open with the use of ditches. B-6.24 curb and gutter outlets to ditches are added where the gutters discharge to the ditch. An interconnect is included along the north side of Bricher Road from approximately 1430 feet (0.27 miles) east of Peck Road to this intersection. Interconnect is also included from along the east side of Peck Road right-of-way to the intersection of Illinois Route 38, approximately 2100 feet (0.40 miles). Total interconnect distance is approximately 0.67 miles. The existing conditions were reviewed for accordance with current design standards.

This alternative includes design exceptions for vertical curves which is further described in section 3.

The curb return on the southeast quadrant would be revised to avoid the blunt curb obstacle for maintenance vehicles. See Figure 8. There is evidence of vehicles hitting this obstacle. The curb return would be revised to transition into the edge of shoulder instead of the edge of pavement.

Figure 8 – Existing Southeast Curb Return Damage

The northeast curb return will have curb added to protect the traffic signal equipment and better define the space between pedestrians/bicyclists and vehicles.

Figure 9 – Existing Northeast Curb Return

The southbound outside shoulder on Peck Road, south of the intersection, will be reconstructed to full depth pavement to accommodate the design vehicle making a westbound left turn. A curb return will be added at the southwest quadrant to better define the space between pedestrian/bicyclist and vehicles, protect traffic signal equipment, and to avoid off-tracking of eastbound right turning vehicles outside the paved area.

Figure 10 – Existing Southwest Curb Return

C. Alternative 2 – Traffic Signals and Profile Modifications

The scope of this improvement is identical to Alternative 1 except that brings all vertical curves to modern criteria standards and has no design exception for vertical curves. The pavement scope includes adding pavement vertically to the south leg to address vertical curve issues and removing and reconstructing pavement for a portion of the north leg to address vertical curve issues.

The construction limits are generally 660 feet south of Bricher Road to 770 feet north of Bricher Road along Peck Road for a total distance of 1430 feet (0.27 miles) and from the intersection of Peck Road to approximately 540 feet east of Peck Road along Bricher Road. The total improvement length is 1970 feet (0.37 miles). Reconstruction length (shown in green) is approximately 290 feet.

The drainage system remains open and ditches can be reestablished within the existing ROW, despite roadway profiles being raised and lowered.

D. Alternative 3 – Single Lane Roundabout

The scope of this improvement replaces the existing traditional channelized intersection with a single lane roundabout. This alternative improves vehicular capacity and improves pedestrian safety.

The construction limits are generally 310 feet south of Bricher Road to 700 feet north of Bricher Road along Peck Road for a total distance of 1010 feet (0.19 miles) and from the intersection of Peck Road to approximately 300 feet east of Peck Road along Bricher Road. The total improvement length is 1310 feet (0.25 miles). Most of the project would include reconstructed pavement (shown in green) with various minor resurfacing improvements at the ends of the project on each approach.

The drainage system will be closed at the intersection with minor storm sewer improvements discharging into the open drainage system on the approaches of the intersection.

Per KDOT direction, Alternative 3 assumes the same interconnect routing to the east and north of the intersection, just like the traffic signal alternatives. A closed-circuit television camera would be implemented on a pole at the roundabout and would connect to the fiber optic interconnect infrastructure for communications with the camera.

Figure 12 – Alternative 3 Plan View

3. Capacity

Capacity analysis was performed for the two-way stop, all-way stop, traffic signal, and single lane roundabout controls. Appendix A includes the Capacity Outputs.

A. Existing

The intersection fails due to the westbound approach experiencing LOS F in the Saturday and weekday PM peak hour. The weekday AM peak hour experiences LOS E on the same approach. The westbound right turn movement experiences an acceptable LOS, but the westbound left turn movement experiences significant delay. The eastbound approach experiences LOS E during the weekday PM peak hour. Peck Road is free flowing and is LOS A. Assuming the worst of the minor street approaches defines the overall intersection LOS, then the intersection performs at LOS F, E, and F in the Saturday, weekday AM and PM peak hours, respectively.

Table 1 – Two-Way Stop	Control Existing	g 2018 Capacit	y Analysis
------------------------	------------------	----------------	------------

Intersection Configuration	Peak Period	Eastbound		Westbound			Northbound			Southbound			
		Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
	Sat AM	-	D	-	F	-	В	Α	-	-	Α	-	-
Peck &			D			F			Α			Α	
Bricher -	АМ	-	D	-	Е	-	В	Α	-	-	Α	-	-
			D			С			Α			Α	
TWSC		-	Е	-	F	-	В	Α	-	-	А	-	-
	PM		E			F			Α			Α	

B. No Build

With projected traffic in the year 2040 the eastbound approach worsens from LOS E to LOS F in the PM peak hour.

Intersection Configuration	Peak Period	Eastbound		Westbound			Northbound			Southbound			
		Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Peck &	Proj AM	-	D	-	Е	-	В	А	-	-	А	-	-
Duichou			D			С			А			А	
Bricher -	Proj PM	-	F	-	F	-	С	А	-	-	Α	-	-
TWSC			F	-		F			Α			Α	

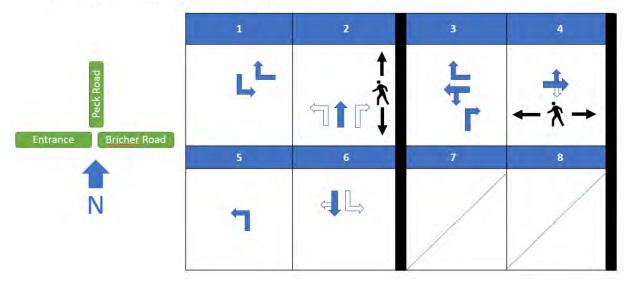
C. AWSC

Installing stop signs on Peck Road to interrupt the free flow condition would improve the LOS on Bricher Road but Peck Road traffic would experience LOS F in the existing PM and Saturday peak hours. It would continue to operate at LOS F in the projected PM peak hour. In the AM peak hour it would worsen from LOS C to LOS D from existing to projected traffic. This traffic control configuration was not carried forward for further evaluation because it would not address the existing capacity issues.

Table 3 – All-Way Stop Control 2018 Capacity Analysis

Intersection Configuration	Peak Period	Ea	Eastbound		We	Westbound			Northbound			Southbound		
		Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	
		В	-	-	В	В	-	В	F	В	В	F	-	
	Sat AM		В			В			F			F		
							F							
		В	-	-	В	Α	-	А	D	Α	В	С	-	
	AM		В			В			D			С		
	Ċ					· · · · · · · · · · · · · · · · · · ·								
Peck &		В	-	-	В	В	-	А	E	Α	В	D	-	
Bricher -	Proj AM		В			В			D			С		
AWSC							Ľ)						
AWSC		В	-	-	С	С	-	В	F	В	В	F	-	
	PM		В			С			F			F		
							F	-						
		В	-	-	С	С	-	В	F	В	С	F	-	
Proj PM			В			С			F			F		
							F							

D. Alternatives 1 and 2


Alternatives 1 and 2 have the same traffic signal control device. Implementing a traffic signal with split phasing eastbound and westbound results in an acceptable intersection LOS for existing and projected traffic. A split phase means that instead of eastbound and westbound phases running concurrently with permissive left turns, the eastbound phase would go with protected movements, then the eastbound phase would end and the westbound phase would go with protected movements. A split phase is preferable due to the low volume of traffic eastbound and the high volume of traffic westbound. In addition, the eastbound traffic volume peaks do not occur at the same time as the traditional peak hours. In most cases the eastbound phase will be skipped due to no traffic on that approach. This will decrease the delay for all other approaches when the eastbound approach phase is skipped. The eastbound approach operates at LOS E in the AM peak hour; however, a shorter cycle length could be implemented in that time period to reduce the delay to that approach.

Intersection Configuration	Peak Period	Ea	Eastbound		W	Westbound			Northbound			Southbound		
		Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	
		-	D	-	-	D	D	А	В	Α	А	Α	-	
	Sat AM		D			D			В			Α		
		В					3							
		-	D	-	I	D	D	А	Α	Α	А	Α	-	
	AM D D						А			A				
De als 9		A						A	۰ <u>ــــــــــــــــــــــــــــــــــــ</u>					
Peck &		-	D	-	I	D	D	А	Α	Α	А	Α	-	
Bricher -	Proj AM		D	-	D			А			A			
Signalized							A	4						
Jighanzeu		-	D	-	I	D	С	А	В	В	А	Α	-	
	PM D C						В			Α				
		В												
		1	D	-	I	D	С	В	В	В	В	Α	-	
	Proj PM D C					С		В			A			
							Ê	3						

Table 4 – Traffic Signal 2040 Capacity Analysis

It should be noted that due to HCS7 program limitations, a westbound right turn overlap and a northbound right turn overlap are not reflected in the calculations; therefore, the estimate of delay is conservative as shown in the summary table of HCS7 outputs. Also, the HCS7 program output files shows the proposed signal phasing diagrammatically incorrect for split phasing despite the calculations being correct. To clarify the proposed traffic signal phasing, a diagram has been prepared. See Figure 13.

Figure 13 – Proposed Traffic Signal Phasing with Split Phasing Eastbound/Westbound

Proposed Traffic Signal Phasing

E. Alternative 3

All approaches operate at an acceptable level of service as a single lane roundabout.

Intersection Configuration	Peak Period Eastbound		Westbound			Northbound			Southbound				
		Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
	Sat AM	-	Α	-	-	Α	-	-	Α	-	-	Α	-
Peck &	AM	-	Α	-	-	Α	-	-	Α	-	-	Α	-
Bricher -	Proj AM	-	Α	-	-	Α	-	-	В	-	-	Α	-
Roundabout	PM	-	А	-	-	Α	-	-	Α	-	-	Α	-
Noundabout	Proj PM	-	Α	-	-	В	-	-	В	-	-	В	-

Table 5 – Roundabout 2040 Capacity Analysis

4. Safety

A. Crash Analysis

The most recent five full years of crash data was collected and reviewed between the years 2012-2016. See Appendix B – Crash Memorandum. There were a total of 13 crashes, or approximately 2.6 crashes per year. The year 2012 alone produced 6 of the 13 crashes. Most of the crashes, 10 out of 13, were rear end collisions. There were two major areas where rear ends collisions were occurring, the first was westbound on Bricher Road, east of the intersection. The second area was northbound on Peck Road, north of the intersection. The remaining crashes were left turn, animal, and other collision types. Most of the crashes were property damage only, 11 of 13. For injury crashes, there was one crash identified as a Type B (Non-incapacitating injury) and one crash identified as a Type C

(Reported, not evident). There were no Type A injury (incapacitating injury) or fatal crashes. Most of the crashes, 8 of 13, occurred between the hours of 3 and 6 P.M. Only 2 of the crashes occurred at night. Most of the crashes occurred during dry roadway conditions, 10 of 13, with 2 crashes occurring on wet roadways, and 1 crash occurring on snow/ice.

Using predictive tools and comparing the existing crash rate, the existing crash rate (2.6) is slightly higher than expected (2.3). A signal control would be expected to lower the crash rate to 1.9 crashes per year. A single lane roundabout control would be expected to lower the crash rate to 1.3 crashes per year.

B. Sight Distance Analysis

A potential existing deficiency was identified during the scoping of this project. Specifically, there were vertical sight distance concerns along Peck Road based upon a field investigation. A review of the vertical alignments was performed. Four vertical curves along Peck Road were found to be substandard. See Appendix C – Sight Distance Exhibits. One sag vertical curve south of the intersection at STA 1994+79.48 was found to have a substandard K value (60) and curve length (55 feet). At minimum the K value should be 96 and the curve length should be 150 feet. The crest vertical curve at the intersection at STA 1999+75.95 has a substandard K value (57); the K value should be 84 at minimum. A sag curve north of the intersection at STA 2001+90.26 has a substandard curve length (140 feet) which should be a minimum of 150 feet. A crest vertical curve further north at STA 2002+99.51 has a substandard K value (24) and length (40 feet). At minimum the K value should be 84 and the curve length should be 150 feet.

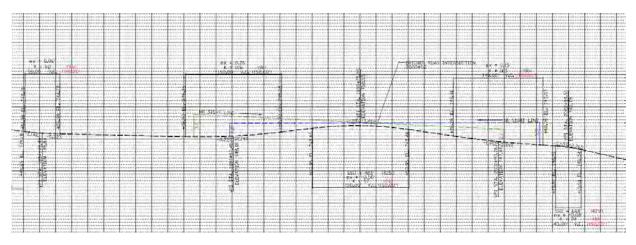

Figure 14 – Photo of Vertical Curves north of intersection looking south

Figure 15– Photo of Vertical Curves south of intersection looking north

A northbound and southbound stopping sight distance analysis was performed and found that the worst case scenario in each direction was found to have adequate stopping sight distance.

Figure 16 – Vertical Alignment Analysis (see Appendix C)

Alternative 1 would maintain the existing substandard curve lengths and K values. Alternative 2 improve the roadway profile to eliminate the substandard vertical curves. Alternative 3 would change the roadway layout all together and vertical curves would be designed to current standards for a roundabout.

5. Bicycle and Pedestrian

The existing conditions include one bicycle/pedestrian crossing of Peck Road on the south leg of the intersection. Peck Road is free flowing; therefore, drivers must yield to users of the crosswalk. The existing conditions include one bicycle/pedestrian crossing of Bricher Road on the east leg of the intersection. There is robust signage on Peck Road for the crosswalk in accordance with the MUTCD. Since Bricher Road is under stop control and the stop sign and stop bar marking are in advance of the crosswalk, it is a safer crossing than the Peck Road crossing. There are small bike stop signs on the east leg crosswalk but none on the south leg crosswalk.

Alternatives 1 and 2 will introduce protected crosswalks with pedestrian signal heads and push buttons as part of the traffic signal. Alternative 3 will provide a splitter island refuge to allow for users of the crosswalk to only manage one direction of travel per crossing, instead of two directions of travel in the existing condition. All alternatives will improve the safety of the existing crossings.

Figure 17 – Photo of Robust Signage for Existing Mid-County Trail Crossing of Peck Road

6. Construction Staging and Maintenance of Traffic

Alternative 1 would result in the least amount of impact to existing traffic flow. Work could be performed with daily lane closures as needed. Existing lane widths could be temporarily restricted to allow for the widening work at the intersection of Peck and Bricher. Work would be restricted to one side of the road at a time. Pedestrian traffic could be accommodated during most of the construction.

Alternative 2, while like Alternative 1 at the intersection, will require reconstruction work on Peck Road north of Bricher to lower the profile, and build up of the existing profile south of Bricher. The reconstruction work will require the construction of temporary pavement to maintain traffic configuration, or a short duration closure of Peck Road north of Bricher Road in order to complete the reconstruction work. The limits of the improvement on Peck Road will also be increased in order to match in with the new profile. Pedestrian traffic could be accommodated during most of the construction.

Alternative 3 would result in the most impact to existing traffic flow. It is likely that the construction of a roundabout would require a complete closure of the intersection.

7. Environmental Impacts

No wetlands or surface water are readily apparent within the project limits; therefore, none of the alternatives anticipate wetland impacts. A wetland report will be completed in the following weeks. A full biological review has not been completed, but none of the alternatives are anticipated to have tree impacts. None of the alternatives are expected to have cultural impacts. Only the roundabout alternative is expected to be impacting a property identified as a potentially impacted property (PIP). The PIP is the judicial center property in the northeast quadrant. Alternatives 1 and 2 would likely require LPC 662 and Alternative 3 would likely require Form LPC 663 as part of the Clean Construction Demolition Debris (CCDD) scope. None of the alternatives should require a detailed noise analysis given the scope of the improvement will likely improve air quality with the improvement in capacity. The

receptors are far away from the intersection; therefore, it is assumed it would likely pass a COSIM prescreen. A comprehensive environmental review will be performed for the selected alternative.

8. Property Impacts

Alternative 1 and Alternative 2 should not require the acquisition of any Right-of-Way, or the need for any Temporary Easements. Alternative 3 will require the need for acquired Right-of-Way on the NE quadrant of the intersection in order to construct new pedestrian accommodations. In addition, in the SE and SW quadrants, a Temporary Easement will be needed to construct new pedestrian accommodations.

9. Utility Impacts

Alternative 1 would require the relocation of 3 joint poles on the east side of Peck Road at the intersection. These poles contain ComEd, Comcast, Geneva F.O. and MetroNet F.O., in addition to a beacon light in the SE quadrant. In addition, a City of Geneva light pole in the SE quadrant would need to be removed. Additional impacts to facilities (handholes) in the SE quadrant would need to be further investigated for depth information as the design advanced.

Alternative 2 would require the relocation of a minimum of 3 joint poles on the east side of Peck Road at the intersection (an additional pole north of Bricher may need to be relocated due to lowering of the existing profile). These poles contain ComEd, Comcast, Geneva F.O. and MetroNet F.O., in addition to a beacon light in the SE quadrant. In addition, a City of Geneva light pole in the SE quadrant would need to be removed. Additional impacts to facilities (handholes) in the SE guadrant would need to be further investigated for depth information as the design advanced.

Alternative 3 would require the

relocation of 6 joint poles on the east side of Peck Road at the intersection. These poles contain ComEd, Comcast, Geneva F.O. and MetroNet F.O., in addition to a beacon light in the SE quadrant. In addition, a City of Geneva light pole in the SE quadrant would need to be removed. Additional impacts to facilities (handholes) in the SE quadrant would need to be relocated, and buried facilities along the east side of Peck Road would need to be evaluated for conflicts as design progresses.

10. Schedule

All alternatives can be completed in one construction season; however, the land acquisition associated with Alternative 3 would delay construction by a year. It is assumed Alternatives 1 and 2 can be completed in 2019 if utilities are preemptively given enough lead time to begin relocation. Alternative 3 construction would likely have to be deferred to 2020 due to land acquisition occurring in 2019.

11. Project Cost

A comprehensive cost estimate was performed for each alternative including Phase I and II engineering costs currently under contract, future Phase III engineering costs based on a percentage of construction, land acquisition costs, construction costs, and contingencies. All utility relocation costs are assumed to be at the cost of others. See Appendix E - Alternative Cost Exhibits. The costs are summarized below with no planning level rounding.

Alternative	Alternative 1	Alternative 2	Alternative 3
Improvement Scope	Traffic Signals	Traffic Signals and	Single Lane
		Profile Modifications	Roundabout
Construction	\$741,600	\$1,111,800	\$1,344,600
Engineering	\$377,428	\$414,428	\$437,728
Land Acquisition	\$0	\$0	\$2,000
Total	\$1,119,028	\$1,526,228	\$1,784,328

Table 6 – Alternative Cost Summary

12. Summary

Table 7 is a summary matrix of the performance of the scenarios. Appendix D includes exhibits of all the alternatives.

Table 7 – Alternative Summary Matrix

				Alternative 1	Alternative 2	Alternative 3
Evaluation Criteria	Measure of Effectiveness (MOE)	Existing Year 2018	No Build Year 2040	Traffic Signal Year 2040	Traffic Signal and Profile Modifications Year 2040	Single Lane Roundabout Year 2040
Capacity	LOS AM (PM)	D (F)	D (F)	A (B)	A (B)	B (B)
	Crash Rate	2.6	2.6+	1.9	1.9	1.3
Safety	Vertical Curve Requirements and Stopping Sight Distance	Curves do not meet modern standards, Meets Sight Distance Requirements	Curves do not meet modern standards, Meets Sight Distance Requirements	Curves do not meet modern standards, Meets Sight Distance Requirements	Improved Stopping Sight Distance and meets modern standards	Reconstruct to meet current standards
Bicycle/Pedestrian	Bicycle/Pedestrian Roadway Crossing Types	One high speed and one low speed crossing with no protection	One high speed and one low speed crossing with no protection	Protected Crossings with pedestrian signal equipment	Protected Crossings with pedestrian signal equipment	Splitter island refuge and one- way direction of traffic per crossing
Construction Staging and MOT	Description	NA	NA	Off-Road operations with some daytime lane closures	Temporary Pavement or Detour North Leg	Intersection Closure and Detour
Environmental Impacts	Description	NA	NA	No impacts anticipated	No impacts anticipated	Impacts PIP
Property Impacts	Acres of Permanent and Temporary Land Acquisition	NA	NA	0 (0) acres	0 (0) acres	0.02 (0.22) acres
Utility Impacts	Facilities and amount of impacts	NA	NA	3 joint power poles	4 joint power poles	6 joint power poles
Schedule		NA	NA	2019 Construction	2019 Construction	2020 Construction
Construction Cost	\$	NA	NA	\$750,000	\$1,100,000	\$1,400,000

13. Conclusions

A. Purpose and Need

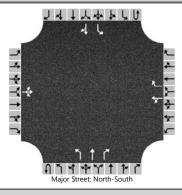
The purpose of this project is to improve capacity at the intersection. The poor capacity at the intersection is a contributor to crashes; however, the crash rate is not above average for a similar intersection with similar traffic. There is no bicycle or pedestrian crash history. The safety of pedestrians and bicyclists crossing Peck Road and Bricher Road is an ancillary benefit of the proposed improvements.

B. Selection of Preferred Alternative

Table 8 summarizes compares alternatives to one another. A "+" (Pro) indicates that the evaluation criteria for that alternative is good in comparison to either the existing and no build conditions (purpose and need for the project) or relative to the other build alternatives. A "+/-" indicates a the criteria is neither good nor bad for that alternative. A "-" (Con) indicates the criteria underperforms for that alternative to other alternatives. The scoring assumes equal weighting of each criteria.

Table 8 – Alternative Selection Matrix	

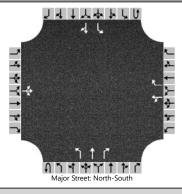
			Build Alternative 1	Build Alternative 2	Build Alternative 3
	Existing	No Build	Traffic Signal	Traffic Signal and Profile Modifications	Single Lane Roundabout
Capacity			+	+	+
Safety – Crash Rate	-	-	+	+	+
Safety – Sight Distance	+/-	+/-	+/-	+	+
Bicycle/Pedestrian	+/-	+/-	+	+	+
Construction Staging and MOT	NA	NA	+	+/-	-
Environmental Impacts	NA	NA	+	+	+
Property Impacts	NA	NA	+	+	-
Utility Impacts	NA	NA	+	+/-	-
Schedule	NA	NA	+	+	-
Cost	NA	NA	+	+/-	-
TOTAL PROS	NA	NA	9.5 / 10	8.5 / 10	5 / 10


Between Alternatives 1 and 2 there is a \$350,000 cost increase with Alternative 2. There are no quantifiable benefits, such as improved crash rate, air quality, or level of service, to show the incremental benefit to the project of the more expensive alternative (Alternative 2). Even though Alternative 1 doesn't meet the modern standard for vertical curves, it still meets the stopping sight distance requirements.

C. Value Considerations

The resurfacing on Peck Road was recent. The County could consider pavement marking removal and remarking the new layout without milling and resurfacing. Bricher Road is under the jurisdiction of the City of Geneva. The County could consider pavement marking removal and remarking the new layout without milling and resurfacing on the local street. This could save approximately \$60,000 from Alternative 1.

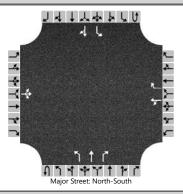
Appendix A Capacity Outputs


HCS7 Two-Way Stop-Control Report										
General Information		Site Information								
Analyst	МРМ	Intersection	Peck and Bricher							
Agency/Co.	СМТ	Jurisdiction	KDOT							
Date Performed	12/7/2018	East/West Street	Bricher Road							
Analysis Year	2040	North/South Street	Peck Road							
Time Analyzed	2040 Projection	Peak Hour Factor	0.92							
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25							
Project Description	Year 2040 Weekday AM Peak Analysis									
Lanes										

Vehicle Volumes and Adjustments

Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	1	0	1	1	1	0	1	1	0
Configuration			LTR			LT		R		L	Т	R		L		TR
Volume (veh/h)		1	1	1		30	1	79		1	487	118		139	438	1
Percent Heavy Vehicles (%)		1	1	1		1	1	1		1				1		
Proportion Time Blocked																
Percent Grade (%)			1			-	1									
Right Turn Channelized						Y	es			Y	es					
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7.31	6.71	6.31		6.91	6.31	6.11		4.11				4.11		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.51	4.01	3.31		3.51	4.01	3.31		2.21				2.21		
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)			3			34		86		1				151		
Capacity, c (veh/h)			141			130		560		1090				1043		
v/c Ratio			0.02			0.26		0.15		0.00				0.14		
95% Queue Length, Q ₉₅ (veh)			0.1			1.0		0.5		0.0				0.5		
Control Delay (s/veh)			31.2			42.2		12.6		8.3				9.0		
Level of Service (LOS)			D			E		В		A				A		
Approach Delay (s/veh)		3 [.]	1.2		20.9					0	.0	2.2				
Approach LOS		ļ	D			(2									

HCS7 Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	МРМ	Intersection	Peck and Bricher								
Agency/Co.	СМТ	Jurisdiction	KDOT								
Date Performed	12/7/2018	East/West Street	Bricher Road								
Analysis Year	2040	North/South Street	Peck Road								
Time Analyzed	2040 Projection	Peak Hour Factor	0.92								
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25								
Project Description	Year 2040 Weekday PM Peak Analysis										
Lanes											

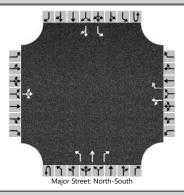


Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	1	0	1	1	1	0	1	1	0
Configuration			LTR			LT		R		L	Т	R		L		TR
Volume (veh/h)		7	2	2		130	5	214		1	539	131		156	563	5
Percent Heavy Vehicles (%)		1	1	1		1	1	1		1				1		
Proportion Time Blocked																
Percent Grade (%)			1			-	1									
Right Turn Channelized						Ye	es			Y	es					
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7.31	6.71	6.31		6.91	6.31	6.11		4.11				4.11		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.51	4.01	3.31		3.51	4.01	3.31		2.21				2.21		
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)			12			147		233		1				170		
Capacity, c (veh/h)			49			87		521		968				994		
v/c Ratio			0.24			1.68		0.45		0.00				0.17		
95% Queue Length, Q ₉₅ (veh)			0.8			12.0		2.3		0.0				0.6		
Control Delay (s/veh)			100.9			431.6		17.4		8.7				9.4		
Level of Service (LOS)			F			F		С		А				Α		
Approach Delay (s/veh)		10	0.9		177.6				0	.0	2.0					
Approach LOS			F				F									

HCS7 Two-Way Stop-Control Report										
General Information Site Information										
Analyst	МРМ	Intersection	Peck and Bricher							
Agency/Co.	СМТ	Jurisdiction	KDOT							
Date Performed	10/27/2018	East/West Street	Bricher Road							
Analysis Year	2018	North/South Street	Peck Road							
Time Analyzed	Sat AM Peak 9:30-10:30	Peak Hour Factor	0.79							
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25							
Project Description	Project Description Saturday AM Capacity Analysis									
Lanes										

Lanes

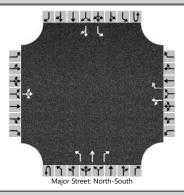

Vehicle Volumes and Adjustments

Approach	T	Eastbound Westbound								North	bound			South	bound	
Movement	U	L	Т	R	U	L	T	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12	0	7	8	9	10	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	0	9	0	1	1	1	40	4	1	0
		0	LTR	0		LT	-		0		T		0		'	TR
Configuration								R		L		R		L	200	
Volume (veh/h)		1	1	3		70	2	90		1	420	71		144	399	2
Percent Heavy Vehicles (%)		1	1	1		1	1	1		1				1		
Proportion Time Blocked																
Percent Grade (%)			1			-	1									
Right Turn Channelized						Y	es			Y	es					
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7.31	6.71	6.31		6.91	6.31	6.11		4.11				4.11		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.51	4.01	3.31		3.51	4.01	3.31		2.21				2.21		
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)			6			91		114		1				182		
Capacity, c (veh/h)			167			108		553		1055				1041		
v/c Ratio			0.04			0.84		0.21		0.00				0.18		
95% Queue Length, Q ₉₅ (veh)			0.1			4.9		0.8		0.0				0.6		
Control Delay (s/veh)			27.4			120.9		13.2		8.4				9.2		
Level of Service (LOS)			D			F		В		A				A		
Approach Delay (s/veh)		27	7.4		61.1			0.0				2.4				
Approach LOS			D				F									

Saturday AM Peak_Capacity Analysis_Peck and Bricher.xtw

HCS7 Two-Way Stop-Control Report										
General Information										
Analyst	МРМ	Intersection	Peck and Bricher							
Agency/Co.	СМТ	Jurisdiction	KDOT							
Date Performed	10/30/2018	East/West Street	Bricher Road							
Analysis Year	2018	North/South Street	Peck Road							
Time Analyzed	Weekday AM Peak 7:30-8:30	Peak Hour Factor	0.82							
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25							
Project Description	Weekday AM Peak Analysis									
Lanes										

Lanes



Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	1	0	1	1	1	0	1	1	0
Configuration			LTR			LT		R		L	Т	R		L		TR
Volume (veh/h)		1	1	1		25	1	66		1	406	98		116	365	1
Percent Heavy Vehicles (%)		1	1	1		1	1	1		1				1		
Proportion Time Blocked																
Percent Grade (%)			1			-	1									
Right Turn Channelized						Ye	es			Y	es					
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7.31	6.71	6.31		6.91	6.31	6.11		4.11				4.11		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.51	4.01	3.31		3.51	4.01	3.31		2.21				2.21		
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)			4			32		80		1				141		
Capacity, c (veh/h)			163			149		584		1119				1074		
v/c Ratio			0.02			0.21		0.14		0.00				0.13		
95% Queue Length, Q ₉₅ (veh)			0.1			0.8		0.5		0.0				0.5		
Control Delay (s/veh)			27.5			35.5		12.1		8.2				8.9		
Level of Service (LOS)			D			E		В		А				A		
Approach Delay (s/veh)		27	7.5		18.8				0	.0	2.1					
Approach LOS		[)			(2									

HCS7 Two-Way Stop-Control Report										
General Information Site Information										
Analyst	МРМ	Intersection	Peck and Bricher							
Agency/Co.	CMT	Jurisdiction	KDOT							
Date Performed	10/30/2018	East/West Street	Bricher Road							
Analysis Year	2018	North/South Street	Peck Road							
Time Analyzed	Weekday PM Peak 5:00-6:00	Peak Hour Factor	0.92							
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25							
Project Description	Weekday PM Peak Analysis									
Lanes										

Lanes

Vehicle Volumes and Adjustments

Approach		Eastbound Westbound						North	bound		Southbound					
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	1	0	1	1	1	0	1	1	0
Configuration			LTR			LT		R		L	Т	R		L		TR
Volume (veh/h)		6	2	2		108	4	178		1	449	109		130	469	5
Percent Heavy Vehicles (%)		1	1	1		1	1	1		1				1		
Proportion Time Blocked																
Percent Grade (%)			1			-	1									
Right Turn Channelized						Ye	es			Y	es					
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7.31	6.71	6.31		6.91	6.31	6.11		4.11				4.11		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.51	4.01	3.31		3.51	4.01	3.31		2.21				2.21		
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)			11			122		193		1				141		
Capacity, c (veh/h)			97			135		590		1056				1080		
v/c Ratio			0.11			0.90		0.33		0.00				0.13		
95% Queue Length, Q ₉₅ (veh)			0.4			6.0		1.4		0.0				0.4		
Control Delay (s/veh)			46.9			115.5		14.1		8.4				8.8		
Level of Service (LOS)			E			F		В		А				Α		
Approach Delay (s/veh)		46	5.9			53	8.2			0	.0			1	.9	
Approach LOS			E			I	=									

											,				
General Inform	nation								Intersec	tion Inf	ormatio	on	K	4 Jata + .	be la
Agency		СМТ							Duration	, h	0.25			-4 L	
Analyst		МРМ		Analys	sis Dat	te 12/10	/2018		Area Typ		Other		4		۲. ۲.
Jurisdiction		КДОТ		Time F					PHF		0.82		→ 	W E	 <!--</td-->
Urban Street		Peck Road		<u></u>		ar 2018			Analysis	Period	1> 7:(00			
Intersection		Bricher Road		File Na			lized W	1	y AM Pe					5+0	r r r r r r r r r r r r r r r r r r r
Project Descrip	tion	Existing AM Peak						oonaa	<i>y</i> ,	an_oup	aony / a	ary oron		 र्ग ↑ के भि	tr (*
							1								
Demand Inform					EB	1		WE	ii.		NB			SB	
Approach Move				L	Т	R	L	Т	R		Т	R	L	Т	R
Demand (v), v	/eh/h			1	1	1	25	1	66	1	406	98	116	365	1
Signal Informa	ation								5			↑			
Cycle, s	90.0	Reference Phase	2	-		i e 216		R	Ħ		Ľ	╮┗━│	572		7
Offset, s	0	Reference Point	End		$\left \right $				_			1	2	3	Y 4
Uncoordinated	No	Simult. Gap E/W	On	Green		2.6	56.8	0.5	5.9	0.0	_				-
Force Mode	Fixed	Simult. Gap E/W	On	Yellow Red	0.0	3.0	4.5	4.5	4.5 1.5	0.0			6	7	¥ 8
	i ikeu		On	1 tou	0.0	0.0	1.5	1.5	1.5	10.0					
Timer Results				EBI	_	EBT	WB	L	WBT	NB		NBT	SBI		SBT
Assigned Phas						4			8	5		2	1		6
Case Number						12.0			11.0	1.1		3.0	1.1		4.0
Phase Duratior	1, S					6.5			11.9	3.2		62.8	8.8		68.4
Change Period	, (Y+ R	c), S				6.0			6.0	3.0		6.0	3.0		6.0
Max Allow Hea	dway(<i>I</i>	<i>MAH</i>), s				3.0			3.0	2.9		0.0	2.9		0.0
Queue Clearan	ice Time	e (g s), s				2.2			6.1	2.0			4.2		
Green Extensio	on Time	(g _e), s				0.0			0.2	0.0		0.0	0.2		0.0
Phase Call Pro	bability					0.09			0.94	0.03	3		0.97	,	
Max Out Proba	bility					0.00			0.00	0.00)		0.00)	
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ement			7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow	Rate(<i>v</i>), veh/h			4			32	80	1	495	120	141	446	
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n		1644	1		1836	1631	1790	1963	1515	1790	1864	
Queue Service	Time (g	g s), s			0.2			1.5	4.1	0.0	11.2	2.8	2.2	2.4	
Cycle Queue C	learanc	e Time (<i>g c</i>), s			0.2			1.5	4.1	0.0	11.2	2.8	2.2	2.4	
Green Ratio (g					0.01			0.07	0.13	0.63	0.63	0.63	0.72	0.69	
Capacity (c), v					10			120	212	682	1238	956	655	1293	
Volume-to-Cap		· · ·			0.38	1		0.265	-	0.002	0.400		0.216	0.345	
		/In (95 th percentile)			4.6			29.7	71	0.3	186.8	37.1	24.6	33.9	
	. ,	eh/In (95 th percent			0.2	<u> </u>		1.2	2.8	0.0	7.4	1.4	1.0	1.3	
		RQ) (95 th percent	tile)		0.00	_		0.30	_	0.00	0.00	0.26	0.25	0.00	
Uniform Delay	· ,				44.6		<u> </u>	40.0		6.1	8.2	6.7	5.0	1.1	
Incremental De	2 1	,			9.0	_		0.4	0.4	0.0	1.0	0.3	0.1	0.7	
Initial Queue D		•			0.0	_		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (53.6 D	<u>'</u>		40.5 D		6.1	9.2	6.9	5.1	1.9	
Level of Service	. ,			E 2 (A 0 7	A	A	A	A	
Approach Dela				53.6	,	D	37.4	+	D	8.7		A	2.6		A
Intersection De	iay, s/ve					٤	8.6						A		
Multimodal Re	sults				EB			WB			NB			SB	
Pedestrian LOS		/LOS		2.5	-	В	2.3	1	В	2.2	8	В	2.0	1	В
Bicycle LOS So				0.5		A	0.7		A	1.5		В	1.5		A
-															

											,				
General Inform	nation								Intersec	tion Inf	ormatio	on	k		be La
Agency		СМТ							Duration		0.25			44	
Analyst		MPM		Analys	sis Dat	e 12/10	2018		Area Typ		Other		 		<u>بر</u>
Jurisdiction		KDOT		Time F		PM P			PHF	-	0.92		- → - ↔	W E	
Urban Street		Peck Road				ar 2018	Jun		Analysis	Period	1> 7:0	00			* ← *
Intersection		Bricher Road		File Na			lized W		y PM Pe					5 + 2	r - r
Project Descrip	tion	Existing PM Peak				loigha	1200_11	oonaa	y 1 101 1 0	an_oup	aony / a	aryoio			tr (*
· · · · · · · · · · · · · · · · · · ·															
Demand Inform	nation				EB			WE	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			6	2	2	108	4	178	1	449	109	130	469	5
0	<i>1</i>			1			11:							_	
Signal Informa	r					R 2US	< 24 a	La	£ I				RT 2		
Cycle, s	90.0	Reference Phase	2		5		51	۳R.	e l			1		3	➡ ₄
Offset, s	0	Reference Point	End	Green		2.7	49.5	1.4	12.2						<u> </u>
Uncoordinated	No	Simult. Gap E/W	On	Yellow	-	3.0	4.5	4.5	4.5	0.0		<u>ר</u> א א			Y
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	1.5	1.5	1.5	0.0		5	6	7	8
Timer Results				EBL		EBT	WB		WBT	NBI		NBT	SBI		SBT
Assigned Phase	<u></u>			EDI	-	4	VVD		8	5	-	2	1		6
Case Number	0					12.0			11.0	1.1		3.0	1.1		4.0
Phase Duration	1.5				-	7.4		-	18.2	3.2		55.5	8.8		61.2
Change Period		c) S			-	6.0			6.0	3.0		6.0	3.0		6.0
Max Allow Head						3.0			3.0	2.9	_	0.0	2.9		0.0
Queue Clearan	2 1	,			+	2.6			11.7	2.0			4.8		0.0
Green Extensio		1 = 7				0.0			0.5	0.0		0.0	0.2		0.0
Phase Call Pro		(3-),-			-	0.24			1.00	0.03			0.97		
Max Out Proba						0.00			0.00	0.00)		0.00)	
Movement Gro	oup Res	ults			EB			WB			NB			SB	
Approach Move	-			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow I	Rate (v), veh/h			11			122	193	1	488	118	141	515	
Adjusted Satura	ation Flo	w Rate (<i>s</i>), veh/h/l	n		1699)		1836	1631	1790	1978	1536	1790	1876	
Queue Service	Time (g	g s), s			0.6			5.5	9.7	0.0	13.2	3.4	2.8	7.2	
Cycle Queue C	learanc	e Time (<i>g c</i>), s			0.6			5.5	9.7	0.0	13.2	3.4	2.8	7.2	
Green Ratio (g	/C)				0.02			0.14	0.20	0.55	0.55	0.55	0.64	0.61	
Capacity (c), v	/eh/h				27			249	327	538	1089	846	564	1151	
Volume-to-Cap		()			0.403	3		0.489	0.592	0.002	0.448	0.140	0.251	0.448	
		In (95 th percentile)			11.6			108.7	_	0.4	230.9	48.5	38.5	96.3	
	, ,	eh/In (95 th percenti			0.5			4.3	6.6	0.0	9.2	1.9	1.5	3.8	
		RQ) (95 th percent	tile)		0.00			1.09		0.00	0.00	0.33	0.39	0.00	
Uniform Delay	. ,				43.9			36.0		9.1	12.1	9.9	8.0	3.9	
Incremental De		,			3.6			0.6	0.6	0.0	1.3	0.3	0.1	1.3	
Initial Queue D		•			0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (47.4			36.6		9.1	13.4	10.2	8.0	5.1	
Level of Service	. ,				D			D	C	A	В	В	A	A	<u> </u>
Approach Delay				47.4		D	34.6	j	С	12.8	5	В	5.8		A
Intersection De	lay, s/ve	eh / LOS				14	1.4						В		
Multimodal Re	sults				EB			WB			NB			SB	
Pedestrian LOS		/LOS		2.5		В	2.3		В	2.2		В	2.1		В
Bicycle LOS Sc	ore / LC	DS		0.5		А	1.0		А	1.5		А	1.6		В
			_												

		псэ	n Siy	nanze	u m	tersec		esui	is Sui	IIIIai	у				
General Inform	ation								Intersec	tion Inf	ormatic	20		╡Ҳ╇↓	ել
	ation	CMT									0.25) 	- 1	44	
Agency		CMT		A	:- D	40/40	10040		Duration		_		<u></u>		
Analyst		MPM		Analys					Area Typ	e	Other				~
Jurisdiction		KDOT		Time F	Period	Saturo Peak	day AM		PHF		0.79		***	w+E 8	*
Urban Street		Peck Road		Analys	sis Yea	ar 2018		1	Analysis	Period	1> 7:0	00		5+2	
Intersection		Bricher Road		File Na	ame	Signa	lized_Sa	aturday	/ AM Pea	ak_Cap	acity An	alysis…		1 ↑ 4 17	1
Project Descrip	tion	Existing Saturday A	M Peak	K											
Demand Inform	nation				EB	;		WB	3		NB			SB	
Approach Move				L	Т	R	L L	Т	R		Т	R	L	Т	R
Demand (v), v				1	1	3	70	2	90	1	420	71	144	399	2
2 0				. ·				_		· ·					_
Signal Informa	ation					R 215	R 14		5			Ĺ			
Cycle, s	90.0	Reference Phase	2		2		51	₽Ŕ.	è				Ψ	-	-
Offset, s	0	Reference Point	End	Green	0.2	2.8	54.2	0.9	8.0	0.0	_	1	2	3	
Uncoordinated	No	Simult. Gap E/W	On	Yellow		3.0	4.5	4.5	4.5	0.0					\rightarrow
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	1.5	1.5	1.5	0.0		5	6	7	-
				501		EDT			MOT			NET	0.54		0.07
Timer Results				EBL	-	EBT	WB		WBT	NB	<u> </u>	NBT	SBI		SBT
Assigned Phase	е				_	4			8	5		2	1		6
Case Number						12.0			11.0	1.1		3.0	1.1		4.0
Phase Duration					_	6.9			14.0	3.2		60.2	8.9		65.9
Change Period,		·				6.0			6.0	3.0		6.0	3.0		6.0
Max Allow Head		,				3.2			3.0	2.9		0.0	2.9		0.0
Queue Clearan		, = ,				2.4			7.7	2.0			5.2		
Green Extensio		(ge),s				0.0			0.3	0.0		0.0	0.3		0.0
Phase Call Pro	-					0.15			0.99	0.03			0.99)	
Max Out Proba	bility					0.00			0.00	0.00)		0.00)	
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move	-			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow F). veh/h			6	1		91	114	1	532	90	182	508	1
-		w Rate (s), veh/h/	In		1518	3		1835	_	1790	1978	1538	1790	1878	
Queue Service					0.4	_		4.3	5.7	0.0	13.2	2.2	3.2	4.3	
Cycle Queue C		- /			0.4			4.3	5.7	0.0	13.2	2.2	3.2	4.3	
Green Ratio (g		(3-),-			0.01	_		0.09	0.15	0.60	0.60	0.60	0.69	0.67	
Capacity (c), v	,				15			163	252	618	1191	926	597	1251	
Volume-to-Capa		tio (X)			0.427	7		0.560		0.002	0.446		0.305	0.406	
		/In (95 th percentile)		7.4	_		86	99	0.4	220.2	30.1	39.2	56.4	
	. ,	eh/In (95 th percent			0.3	_		3.4	3.9	0.0	8.7	1.2	1.6	2.2	
	<u> </u>	RQ) (95 th percen	,		0.00	_		0.86	0.99	0.00	0.00	0.21	0.39	0.00	
Uniform Delay (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			44.3			39.3	34.6	7.1	9.7	7.6	6.4	1.9	
Incremental De	, ,				7.1			1.1	0.5	0.0	1.2	0.2	0.1	1.0	
		•			0.0			0.0	0.0	0.0	0.0	0.2	0.0	0.0	
Initial Queue De		•			51.4			40.4	35.0	7.1	11.0	7.8	6.5	2.9	
Initial Queue De	d) elve				D			40.4 D	D	A	B	7.0 A	0.3 A	2.9 A	
Control Delay (U U		~					1
Control Delay (Level of Service	e (LOS)			51 /		P	27 /	1	D	10 4	5	B	3.0		Δ
Control Delay (Level of Service Approach Delay	e (LOS) y, s/veh	/LOS		51.4		D 11	37.4	1	D	10.5	5	В	3.9 B		А
Control Delay (Level of Service	e (LOS) y, s/veh	/LOS		51.4			37.4 1.3	1	D	10.8	5		3.9 B		A
Control Delay (Level of Service Approach Delay	e (LOS) y, s/veh lay, s/ve	/LOS		51.4		11		t WB	D	10.5	5 NB			SB	A
Control Delay (Level of Service Approach Delay Intersection Del	e (LOS) y, s/veh lay, s/ve sults	/ LOS h / LOS		2.5	EB	11		WB	D	2.2	NB			SB	A

		1103	7 Siy	nanze	u ini	ersec		reau	its Su	IIIIai	у				
General Inform	ation							1	Intersed	tion Inf	ormatic			4.Jaba↓	ել
		CMT									10	n	- 1	44	
Agency		CMT				40/40	100.10		Duration		0.25				R.
Analyst		MPM		Analys					Area Typ	be	Other				 <!--</td-->
Jurisdiction		KDOT		Time F	Period	Week Peak	day PM		PHF		0.92		\$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$	W E B	\$ ← *
Urban Street		Peck Road		Analys	sis Yea	r 2040			Analysis	Period	1> 7:0	00		510	
Intersection		Bricher Road		File Na	ame	Signa	lized_Pr	rojecte	ed AM Pe	ak_Cap	acity Ar	alysis		A↑ 4 Y	tr (*
Project Descripti	ion	Exising PM Peak													
Demand Inform	ation				EB			W	В		NB			SB	
Approach Mover	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), ve	eh/h			1	1	1	30	1	79	1	487	118	139	438	1
				1	T T	1 111		1	2	_			1		
Signal Informat	1		0		6	~ 21.S	~ ~ +**	La	H		ļ		rta		
Cycle, s	90.0	Reference Phase	2	-	5		- <u>5</u> 1	rŔ	E I			1		3	
Offset, s	0	Reference Point	End	Green	0.2	2.7	56.5	0.5	5 6.2	0.0					5
Uncoordinated	No	Simult. Gap E/W	On	Yellow		3.0	4.5	4.5		0.0					Y
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	1.5	1.5	5 1.5	0.0		5	6	7	8
Timer Results			_	EBI		EBT	WBI		WBT	NB		NBT	SBI		SBT
Assigned Phase	<u> </u>					4		-	8	5		2	1		6
Case Number	•					12.0		-	11.0	1.1		3.0	1.1		4.0
Phase Duration,	<u>_</u>					6.5			12.2	3.2		62.5	8.9		68.2
Change Period,						6.0	<u> </u>	-	6.0	3.0	_	6.0	3.0	_	6.0
-		,		<u> </u>		3.0	<u> </u>			2.9			2.9		
Max Allow Head	• •	· ·					<u> </u>	_	3.0			0.0			0.0
Queue Clearance Green Extension		, = ,		<u> </u>	-	2.2 0.0	<u> </u>	-	6.3 0.2	2.0 0.0		0.0	4.4		0.0
Phase Call Prob		(90),0				0.08			0.95	0.03		0.0	0.98		0.0
Max Out Probab						0.00		-	0.00	0.00			0.00	_	
Max Out 10bab	mry					0.00			0.00	0.00	,		0.00	,	
Movement Gro	up Res	ults			EB			WE	3		NB			SB	
Approach Mover	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Mover	nent			7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow R	late (v), veh/h			3			34	86	1	529	128	151	477	
Adjusted Satura	tion Flo	w Rate (<i>s</i>), veh/h/l	n		1644			183	6 1631	1790	1963	1515	1790	1677	
Queue Service 1	Time (g	g s), S			0.2			1.6	4.3	0.0	12.4	3.1	2.4	3.3	
Cycle Queue Cle	earance	e Time (<i>g c</i>), s			0.2			1.6	4.3	0.0	12.4	3.1	2.4	3.3	
Green Ratio (g/	'С)				0.01			0.07	7 0.13	0.63	0.63	0.63	0.71	0.69	
Capacity (c), ve	eh/h				9			126	218	661	1232	951	627	1159	
Volume-to-Capa	city Ra	tio (<i>X</i>)			0.379			0.26	7 0.393	0.002	0.430	0.135	0.241	0.412	
Back of Queue (Q), ft/	In (95 th percentile))		4.2			31.4	4 75.5	0.3	204.5	40.9	27	41	
Back of Queue ((Q), ve	eh/ln (95 th percenti	ile)		0.2			1.2	3.0	0.0	8.1	1.6	1.1	1.6	
Queue Storage	Ratio (RQ) (95 th percent	tile)		0.00			0.31	0.76	0.00	0.00	0.28	0.27	0.00	
Uniform Delay (d 1), s/	/veh			44.6			39.8	3 35.6	6.2	8.5	6.8	5.4	1.2	
Incremental Dela	ay (<i>d</i> 2), s/veh			9.9			0.4	0.4	0.0	1.1	0.3	0.1	1.1	
Initial Queue De	lay (d	₃), s/veh			0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d	d), s/ve	eh			54.5			40.2	2 36.1	6.2	9.6	7.1	5.5	2.3	
Level of Service	(LOS)				D			D	D	Α	Α	Α	Α	Α	
Approach Delay,	, ,	/ LOS		54.5	5	D	37.2	2	D	9.1		A	3.1		А
Intersection Dela						8	.9						A		
Multimodal Res					EB			WE			NB			SB	_
Pedestrian LOS				2.5		B	2.3	_	B	2.2	_	B	2.0	_	В
Bicycle LOS Sco	ore / LC	15		0.5		A	0.7		A	1.6		В	1.5		В

		1103	7 Oly	nanze	um	61360		esu	is Sur	mar	У				
General Informat	tion								Intersec	tion Inf	ormatic	<u></u>	k	╎┥┧╅	يا مل
		СМТ							Duration		0.25	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		44	
Agency		MPM		Analys	ia Date	e 12/10/	/2010			-	Other		_*		K.
Analyst		KDOT		Time F					Area Typ PHF	e	0.92		 -⇒	w1e	~
Jurisdiction						Peak	ted PM						74 77		+ + 1 2
Urban Street		Peck Road		Analys					Analysis		1> 7:(5 t C	
Intersection		Bricher Road		File Na	ame	Signa	lized_Pr	ojecte	d PM Pe	ak_Cap	acity Ar	nalysis	· 1	1 4 1 4 17	t* (*
Project Description	n	Projected PM Peak													
Demand Information	tion				EB			WE	3		NB			SB	
Approach Moveme	ent			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), veh	ı/h			7	2	2	130	5	214	1	539	131	156	563	5
					° 1 1				_						
Signal Informatio	1		-		6	~ 21.L	< 2 45a	La	£ −				r † x		
	90.0	Reference Phase	2	-	5			R.	e			1		3	➡ ₄
Offset, s	0	Reference Point	End	Green	0.2	2.8	47.3	1.6	14.2	2 0.0					
	No	Simult. Gap E/W	On	Yellow	-	3.0	4.5	4.5	4.5	0.0		5 4			V
Force Mode F	ixed	Simult. Gap N/S	On	Red	0.0	0.0	1.5	1.5	1.5	0.0	_	5	6	7	8
Timer Results				EBL		EBT	WBI	L	WBT	NBI	_	NBT	SBI		SBT
Assigned Phase						4			8	5		2	1		6
Case Number						12.0			11.0	1.1		3.0	1.1		4.0
Phase Duration, s	3					7.6			20.2	3.2		53.3	8.9		59.0
Change Period, (:).s				6.0			6.0	3.0	_	6.0	3.0		6.0
Max Allow Headwa						3.0			3.0	2.9		0.0	2.9		0.0
Queue Clearance		,				2.6			13.6	2.0		0.0	5.6		
Green Extension		1 - 7		-		0.0			0.6	0.0		0.0	0.2		0.0
Phase Call Proba						0.26			1.00	0.03			0.99		
Max Out Probabili	-					0.00			0.00	0.00			0.00		
	_														
Movement Group	-	ults			EB		<u> </u>	WB			NB		<u> </u>	SB	
Approach Moveme					T	R	L	T	R	L	T	R	L	T	R
Assigned Moveme		<u> </u>		7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow Rat		,			12			147	233	1	586	142	170	617	<u> </u>
-		w Rate (<i>s</i>), veh/h/l	n		1707			1836		1790	1978	1535	1790	1876	
Queue Service Tir		,			0.6			6.6	11.6	0.0	18.0	4.4	3.6	11.4	<u> </u>
Cycle Queue Clea		e Time (<i>g c</i>), s			0.6			6.6	11.6	0.0	18.0	4.4	3.6	11.4	
Green Ratio (g/C	,				0.02			0.16	0.22	0.53	0.53	0.53	0.61	0.59	
Capacity (c), veh					29		=	291	365	440	1039	806	469	1106	
Volume-to-Capaci					0.406			0.505		0.002	0.564	0.177	0.362	0.558	
		In (95 th percentile) h/In (95 th percenti			12.7 0.5			128.3 5.1	196.3 7.8	0.4	304 12.1	63.9 2.5	52.5 2.1	147.4 5.8	
		RQ) (95 th percent			0.00			1.28	1.96	0.00	0.00	0.44	0.53	0.00	
-		,, ,						34.7		10.4				5.2	
Uniform Delay (<i>d</i> Incremental Delay					43.8 3.3			0.5	31.6 0.7	0.0	14.4 2.2	11.2 0.5	10.2 0.2	2.0	<u> </u>
Initial Queue Dela		•			0.0			0.0	0.7	0.0	0.0	0.0	0.2	0.0	
Control Delay (d)		,			47.1			0.0 35.2	32.3	10.4	16.6	11.6	10.4	7.3	
Level of Service (L		/1			47.1 D			55.2 D	C	B	B	B	B	7.3 A	
Approach Delay, s	,	/105		47.1		D	33.4		C	15.6		B	 7.9	1	A
Intersection Delay				47.1			5.2 5.2		0	15.0	,		7.9 B		A
	, 3/VE												J		
Multimodal Resu	llts				EB			WB			NB			SB	
Pedestrian LOS S		/LOS		2.4		В	2.3		В	2.3	ii.	В	2.1		В
)S		0.5		А	1.1		А	1.7	_	В	1.8		В

INTERSECTION SUMMARY

Site: 101 [Peck & Bricher - Projected AM Peak]

Peck Road & Bricher Road Site Category: -Roundabout

Intersection Performance - Hourly Values		
Performance Measure	Vehicles	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total)	32.5 mph 887.5 veh-mi/h 27.3 veh-h/h	32.5 mph 1065.0 pers-mi/h 32.7 pers-h/h
Demand Flows (Total) Percent Heavy Vehicles (Demand) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	1410 veh/h 3.0 % 0.578 47.2 % 2441 veh/h	1692 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	3.46 veh-h/h 8.8 sec 10.3 sec 10.3 sec 0.0 sec 8.8 sec 6.7 sec	4.15 pers-h/h 8.8 sec 10.3 sec
95% Back of Queue - Vehicles (Worst Lane) 95% Back of Queue - Distance (Worst Lane) Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	LOS A 4.4 veh 112.6 ft 0.03 353 veh/h 0.25 0.40 48.6	424 pers/h 0.25 0.40 48.6
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	394.79 \$/h 36.1 gal/h 323.7 kg/h 0.028 kg/h 0.399 kg/h 0.498 kg/h	394.79 \$/h

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

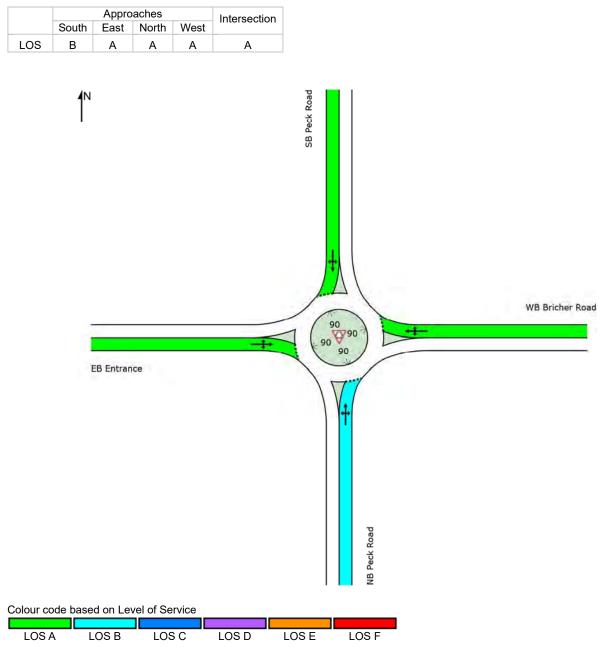
Roundabout Capacity Model: US HCM 6.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Site Model Variability Index (Iterations 3 to N): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 100.0% 93.3% 0.0%

Performance Measure	Vehicles	Persons
Demand Flows (Total)	676.696 veh/y	812,035 pers/y
Delay	1,661 veh-h/y	1,993 pers-h/y
Effective Stops	169,616 veh/y	203,539 pers/y
Travel Distance	426,016 veh-mi/y	511,219 pers-mi/y
Travel Time	13,097 veh-h/y	15,717 pers-h/y
	· · · · · · · · · · · · · · · · · · ·	
Cost	189,501 \$/y	189,501 \$/y


SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CRAWFORD, MURPHY & TILLY, INC. | Processed: Wednesday, December 19, 2018 12:29:49 PM Project: Not Saved

LANE LEVEL OF SERVICE

Lane Level of Service

Site: 101 [Peck & Bricher - Projected AM Peak]

Peck Road & Bricher Road Site Category: -Roundabout

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CRAWFORD, MURPHY & TILLY, INC. | Processed: Wednesday, December 19, 2018 12:29:49 PM Project: Not Saved

MOVEMENT SUMMARY

Site: 101 [Peck & Bricher - Projected AM Peak]

Peck Road & Bricher Road Site Category: -Roundabout

Move	ement P	erformance	e - Veh	icles								
Mov	Turn	Demand I		Deg.	Average	Level of	95% Back		Prop.		Aver. No.	
ID		Total veh/h	HV %	Satn v/c	Delay	Service	Vehicles veh	Distance ft	Queued	Stop Rate	Cycles	Speed
South	: NB Peo		70	V/C	sec	_	ven	11	_	_	_	mph
3	L2	1	3.0	0.578	10.3	LOS B	4.4	112.6	0.54	0.36	0.54	32.3
8	T1	529	3.0	0.578	10.3	LOS B	4.4	112.6	0.54	0.36	0.54	32.3
18	R2	128	3.0	0.578	10.3	LOS B	4.4	112.6	0.54	0.36	0.54	31.5
Appro		659	3.0	0.578	10.3	LOS B	4.4	112.6	0.54	0.36	0.54	32.1
Fast:	WB Bricl	ner Road										
1	L2	33	3.0	0.156	6.3	LOS A	0.6	16.4	0.57	0.52	0.57	33.4
6	T1	1	3.0	0.156	6.3	LOSA	0.6	16.4	0.57	0.52	0.57	33.4
16	R2	86	3.0	0.156	6.3	LOS A	0.6	16.4	0.57	0.52	0.57	32.6
Appro	ach	120	3.0	0.156	6.3	LOS A	0.6	16.4	0.57	0.52	0.57	32.8
North	: SB Pec	k Road										
7	L2	151	3.0	0.486	7.8	LOS A	3.6	92.7	0.22	0.08	0.22	32.9
4	T1	476	3.0	0.486	7.8	LOSA	3.6	92.7	0.22	0.08	0.22	32.9
14	R2	1	3.0	0.486	7.8	LOS A	3.6	92.7	0.22	0.08	0.22	32.0
Appro	ach	628	3.0	0.486	7.8	LOS A	3.6	92.7	0.22	0.08	0.22	32.9
West:	EB Entra	ance										
5	L2	1	3.0	0.005	5.4	LOS A	0.0	0.5	0.57	0.39	0.57	33.8
2	T1	1	3.0	0.005	5.4	LOS A	0.0	0.5	0.57	0.39	0.57	33.8
12	R2	1	3.0	0.005	5.4	LOS A	0.0	0.5	0.57	0.39	0.57	32.9
Appro	ach	3	3.0	0.005	5.4	LOS A	0.0	0.5	0.57	0.39	0.57	33.5
All Ve	hicles	1410	3.0	0.578	8.8	LOS A	4.4	112.6	0.40	0.25	0.40	32.5

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CRAWFORD, MURPHY & TILLY, INC. | Processed: Wednesday, December 19, 2018 12:29:49 PM Project: Not Saved

INTERSECTION SUMMARY

Site: 101 [Peck & Bricher - Projected PM Peak]

Peck Road & Bricher Road Site Category: -Roundabout

Intersection Performance - Hourly Values		
Performance Measure	Vehicles	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total)	30.6 mph 1200.8 veh-mi/h 39.2 veh-h/h	30.6 mph 1440.9 pers-mi/h 47.0 pers-h/h
Demand Flows (Total) Percent Heavy Vehicles (Demand) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	1908 veh/h 3.0 % 0.686 23.9 % 2781 veh/h	2289 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	6.82 veh-h/h 12.9 sec 13.2 sec 13.2 sec 0.0 sec 12.9 sec 8.7 sec LOS B	8.18 pers-h/h 12.9 sec 13.2 sec
95% Back of Queue - Vehicles (Worst Lane) 95% Back of Queue - Distance (Worst Lane) Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	6.8 veh 174.6 ft 0.04 1055 veh/h 0.55 0.67 83.7	1266 pers/h 0.55 0.67 83.7
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	583.33 \$/h 51.4 gal/h 460.2 kg/h 0.041 kg/h 0.561 kg/h 0.712 kg/h	583.33 \$/h

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Roundabout Capacity Model: US HCM 6.

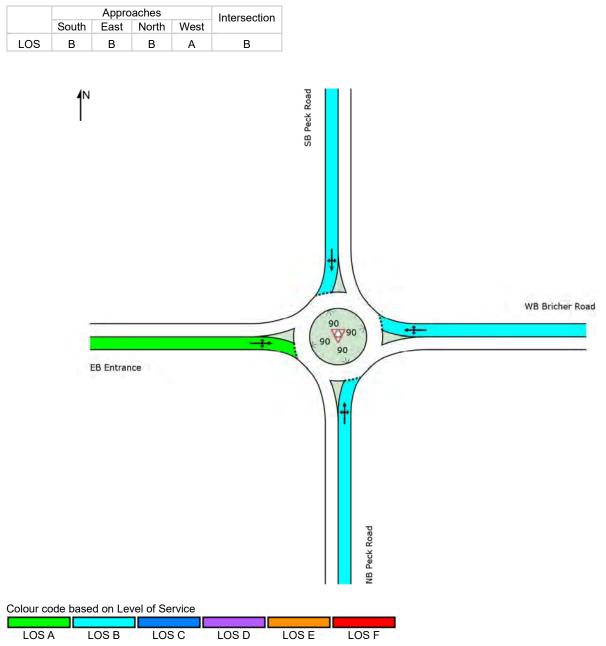
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Site Model Variability Index (Iterations 3 to N): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 100.0% 94.9% 0.0%

Deufennese Mereene	Makiala a			
Performance Measure	Vehicles	Persons		
Demand Flows (Total)	915,652 veh/y	1,098,783 pers/y		
Delay	3,271 veh-h/y	3,925 pers-h/y		
Effective Stops	506,261 veh/y	607,513 pers/y		
Travel Distance	576,364 veh-mi/y	691,636 pers-mi/y		
Travel Time	18,816 veh-h/y	22,579 pers-h/y		
Cost	279,998 \$/y	279,998 \$/y		

Fuel Consumption24,648 gal/yCarbon Dioxide220,897 kg/yHydrocarbons20 kg/yCarbon Monoxide269 kg/yNOx342 kg/y		lydrocarbons Carbon Monoxide	Car Hyd Car
---	--	---------------------------------	-------------------


SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CRAWFORD, MURPHY & TILLY, INC. | Processed: Wednesday, December 19, 2018 12:29:49 PM Project: Not Saved

LANE LEVEL OF SERVICE

Lane Level of Service

Site: 101 [Peck & Bricher - Projected PM Peak]

Peck Road & Bricher Road Site Category: -Roundabout

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CRAWFORD, MURPHY & TILLY, INC. | Processed: Wednesday, December 19, 2018 12:29:49 PM Project: Not Saved

MOVEMENT SUMMARY

Site: 101 [Peck & Bricher - Projected PM Peak]

Peck Road & Bricher Road Site Category: -Roundabout

Move	ement P	erformance	e - Veh	icles								
Mov ID	Turn	Demand F Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed mph
South	: NB Pec	k Road										
3	L2	1	3.0	0.657	12.5	LOS B	6.8	174.6	0.65	0.51	0.73	31.3
8	T1	586	3.0	0.657	12.5	LOS B	6.8	174.6	0.65	0.51	0.73	31.3
18	R2	142	3.0	0.657	12.5	LOS B	6.8	174.6	0.65	0.51	0.73	30.5
Appro	bach	729	3.0	0.657	12.5	LOS B	6.8	174.6	0.65	0.51	0.73	31.1
East:	WB Brich	ner Road										
1	L2	141	3.0	0.529	13.2	LOS B	3.7	95.3	0.75	0.88	1.13	30.2
6	T1	5	3.0	0.529	13.2	LOS B	3.7	95.3	0.75	0.88	1.13	30.2
16	R2	233	3.0	0.529	13.2	LOS B	3.7	95.3	0.75	0.88	1.13	29.4
Appro	bach	379	3.0	0.529	13.2	LOS B	3.7	95.3	0.75	0.88	1.13	29.7
North	: SB Pecl	< Road										
7	L2	170	3.0	0.686	13.1	LOS B	6.4	162.8	0.64	0.43	0.64	30.6
4	T1	612	3.0	0.686	13.1	LOS B	6.4	162.8	0.64	0.43	0.64	30.6
14	R2	5	3.0	0.686	13.1	LOS B	6.4	162.8	0.64	0.43	0.64	29.9
Appro	bach	787	3.0	0.686	13.1	LOS B	6.4	162.8	0.64	0.43	0.64	30.6
West:	EB Entra	ance										
5	L2	8	3.0	0.024	7.4	LOS A	0.1	2.1	0.64	0.58	0.64	32.1
2	T1	2	3.0	0.024	7.4	LOS A	0.1	2.1	0.64	0.58	0.64	32.1
12	R2	2	3.0	0.024	7.4	LOS A	0.1	2.1	0.64	0.58	0.64	31.3
Appro	bach	12	3.0	0.024	7.4	LOS A	0.1	2.1	0.64	0.58	0.64	32.0
All Ve	hicles	1908	3.0	0.686	12.9	LOS B	6.8	174.6	0.67	0.55	0.77	30.6

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CRAWFORD, MURPHY & TILLY, INC. | Processed: Wednesday, December 19, 2018 12:29:49 PM Project: Not Saved

INTERSECTION SUMMARY

Site: 101 [Peck & Bricher - Saturday AM Peak]

Peck Road & Bricher Road Site Category: -Roundabout

Intersection Performance - Hourly Values		
Performance Measure	Vehicles	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total)	32.8 mph 825.2 veh-mi/h 25.1 veh-h/h	32.8 mph 990.2 pers-mi/h 30.1 pers-h/h
Demand Flows (Total) Percent Heavy Vehicles (Demand) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	1309 veh/h 3.0 % 0.481 76.9 % 2723 veh/h	1570 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	2.88 veh-h/h 7.9 sec 8.3 sec 8.3 sec 0.0 sec 7.9 sec 5.7 sec LOS A	3.46 pers-h/h 7.9 sec 8.3 sec
95% Back of Queue - Vehicles (Worst Lane) 95% Back of Queue - Distance (Worst Lane) Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	3.4 veh 86.8 ft 0.02 361 veh/h 0.28 0.42 43.4	434 pers/h 0.28 0.42 43.4
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	366.83 \$/h 33.7 gal/h 302.4 kg/h 0.026 kg/h 0.372 kg/h 0.466 kg/h	366.83 \$/h

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Roundabout Capacity Model: US HCM 6.

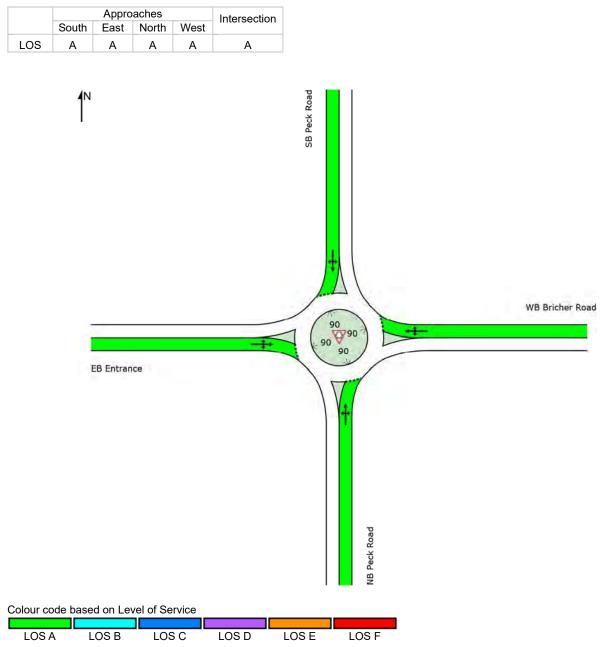
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Site Model Variability Index (Iterations 3 to N): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 100.0% 93.3% 0.0%

Performance Measure	Vehicles	Persons	
Demand Flows (Total)	628,174 veh/y	753,809 pers/y	
Delay	1,384 veh-h/y	1,661 pers-h/y	
Effective Stops	173,451 veh/y	208,141 pers/y	
Travel Distance	396,080 veh-mi/y	475,296 pers-mi/y	
Travel Time	12,058 veh-h/y	14,469 pers-h/y	
Cost	176.078 \$/y	176.078 \$/y	

Fuel Consumption	16,196 gal/y	
Carbon Dioxide	145,171 kg/y	
Hydrocarbons	13 kg/y	
Carbon Monoxide	179 kg/y	
NOx	224 kg/y	


SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CRAWFORD, MURPHY & TILLY, INC. | Processed: Wednesday, December 19, 2018 12:29:51 PM Project: Not Saved

LANE LEVEL OF SERVICE

Lane Level of Service

V Site: 101 [Peck & Bricher - Saturday AM Peak]

Peck Road & Bricher Road Site Category: -Roundabout

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CRAWFORD, MURPHY & TILLY, INC. | Processed: Wednesday, December 19, 2018 12:29:51 PM Project: Not Saved

MOVEMENT SUMMARY

V Site: 101 [Peck & Bricher - Saturday AM Peak]

Peck Road & Bricher Road Site Category: -Roundabout

Move	ement P	erformance	e - Vehi	icles								
Mov ID	Turn	Demand I Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed mph
South	: NB Pec	k Road										
3	L2	1	3.0	0.472	8.3	LOS A	3.1	78.4	0.47	0.31	0.47	33.2
8	T1	457	3.0	0.472	8.3	LOS A	3.1	78.4	0.47	0.31	0.47	33.2
18	R2	77	3.0	0.472	8.3	LOS A	3.1	78.4	0.47	0.31	0.47	32.4
Appro	ach	535	3.0	0.472	8.3	LOS A	3.1	78.4	0.47	0.31	0.47	33.1
East:	WB Brich	ner Road										
1	L2	76	3.0	0.213	6.6	LOS A	0.9	23.7	0.56	0.50	0.56	32.9
6	T1	2	3.0	0.213	6.6	LOS A	0.9	23.7	0.56	0.50	0.56	32.9
16	R2	98	3.0	0.213	6.6	LOS A	0.9	23.7	0.56	0.50	0.56	32.1
Appro	ach	176	3.0	0.213	6.6	LOS A	0.9	23.7	0.56	0.50	0.56	32.4
North	: SB Pecl	k Road										
7	L2	157	3.0	0.481	8.0	LOS A	3.4	86.8	0.34	0.17	0.34	32.7
4	T1	434	3.0	0.481	8.0	LOS A	3.4	86.8	0.34	0.17	0.34	32.7
14	R2	2	3.0	0.481	8.0	LOS A	3.4	86.8	0.34	0.17	0.34	31.9
Appro	ach	592	3.0	0.481	8.0	LOS A	3.4	86.8	0.34	0.17	0.34	32.7
West:	EB Entra	ance										
5	L2	1	3.0	0.008	5.5	LOS A	0.0	0.8	0.57	0.42	0.57	34.1
2	T1	1	3.0	0.008	5.5	LOS A	0.0	0.8	0.57	0.42	0.57	34.1
12	R2	3	3.0	0.008	5.5	LOS A	0.0	0.8	0.57	0.42	0.57	33.2
Appro	ach	5	3.0	0.008	5.5	LOS A	0.0	0.8	0.57	0.42	0.57	33.5
All Ve	hicles	1309	3.0	0.481	7.9	LOS A	3.4	86.8	0.42	0.28	0.42	32.8

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CRAWFORD, MURPHY & TILLY, INC. | Processed: Wednesday, December 19, 2018 12:29:51 PM Project: Not Saved

INTERSECTION SUMMARY

V Site: 101 [Peck & Bricher - Weekday AM Peak]

Peck Road & Bricher Road Site Category: -Roundabout

Intersection Performance - Hourly Values		
Performance Measure	Vehicles	Persons
Travel Speed (Average)	33.3 mph	33.3 mph
Travel Distance (Total)	740.4 veh-mi/h	888.5 pers-mi/h
Travel Time (Total)	22.2 veh-h/h	26.7 pers-h/h
Demand Flows (Total)	1176 veh/h	1411 pers/h
Percent Heavy Vehicles (Demand)	3.0 %	
Degree of Saturation	0.469	
Practical Spare Capacity	81.3 %	
Effective Intersection Capacity	2509 veh/h	
Control Delay (Total)	2.36 veh-h/h	2.83 pers-h/h
Control Delay (Average)	7.2 sec	7.2 sec
Control Delay (Worst Lane)	8.1 sec	
Control Delay (Worst Movement)	8.1 sec	8.1 sec
Geometric Delay (Average)	0.0 sec	
Stop-Line Delay (Average) Idling Time (Average)	7.2 sec 5.5 sec	
Intersection Level of Service (LOS)	LOS A	
95% Back of Queue - Vehicles (Worst Lane)	3.1 veh	
95% Back of Queue - Distance (Worst Lane)	79.6 ft	
Queue Storage Ratio (Worst Lane)	0.02	
Total Effective Stops	219 veh/h	263 pers/h
Effective Stop Rate	0.19	0.19
Proportion Queued	0.32	0.32
Performance Index	37.2	37.2
Cost (Total)	320.00 \$/h	320.00 \$/h
Fuel Consumption (Total)	29.7 gal/h	520.00 ψ/Π
Carbon Dioxide (Total)	266.5 kg/h	
Hydrocarbons (Total)	0.023 kg/h	
Carbon Monoxide (Total)	0.329 kg/h	
NOx (Total)	0.410 kg/h	

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Roundabout Capacity Model: US HCM 6.

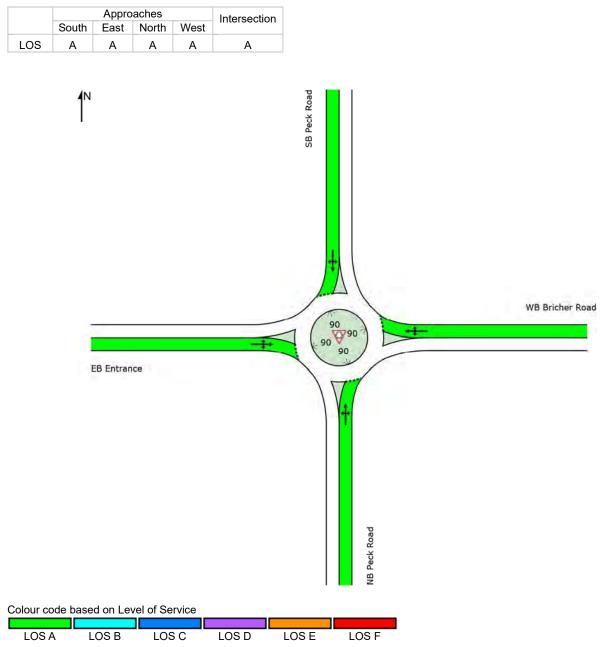
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Site Model Variability Index (Iterations 3 to N): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 100.0% 92.5% 0.0%

Performance Measure	Vehicles	Persons
	Verificies	Persons
Demand Flows (Total)	564,522 veh/y	677,426 pers/y
Delay	1,132 veh-h/y	1,359 pers-h/y
Effective Stops	105,110 veh/y	126,132 pers/y
Travel Distance	355,400 veh-mi/y	426,479 pers-mi/y
Travel Time	10,673 veh-h/y	12,808 pers-h/y
Cost	153,602 \$/y	153,602 \$/y

Carbon Dioxide127,916 kg/yHydrocarbons11 kg/yCarbon Monoxide158 kg/yNOx197 kg/y	Hydrocarbons Carbon Monoxide
---	---------------------------------


SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CRAWFORD, MURPHY & TILLY, INC. | Processed: Wednesday, December 19, 2018 12:29:51 PM Project: Not Saved

LANE LEVEL OF SERVICE

Lane Level of Service

V Site: 101 [Peck & Bricher - Weekday AM Peak]

Peck Road & Bricher Road Site Category: -Roundabout

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CRAWFORD, MURPHY & TILLY, INC. | Processed: Wednesday, December 19, 2018 12:29:51 PM Project: Not Saved

MOVEMENT SUMMARY

V Site: 101 [Peck & Bricher - Weekday AM Peak]

Peck Road & Bricher Road Site Category: -Roundabout

Movement Performance - Vehicles												
Mov ID	Turn	Demand I Total	ΗV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	Distance	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Speed
South: NB Pec		veh/h	%	v/c	sec		veh	ft				mph
		1	3.0	0.469	8.1	LOS A	3.1	79.6	0.43	0.26	0.43	33.3
3	L2											
8	T1	441	3.0	0.469	8.1	LOSA	3.1	79.6	0.43	0.26	0.43	33.3
18	R2	107	3.0	0.469	8.1	LOS A	3.1	79.6	0.43	0.26	0.43	32.5
Appro	ach	549	3.0	0.469	8.1	LOS A	3.1	79.6	0.43	0.26	0.43	33.2
East:	WB Bricl	her Road										
1	L2	27	3.0	0.119	5.5	LOS A	0.5	12.5	0.52	0.44	0.52	33.9
6	T1	1	3.0	0.119	5.5	LOS A	0.5	12.5	0.52	0.44	0.52	33.9
16	R2	72	3.0	0.119	5.5	LOS A	0.5	12.5	0.52	0.44	0.52	33.0
Appro	ach	100	3.0	0.119	5.5	LOS A	0.5	12.5	0.52	0.44	0.52	33.2
North	SB Pec	k Road										
7	L2	126	3.0	0.403	6.6	LOS A	2.6	67.5	0.18	0.06	0.18	33.5
4	T1	397	3.0	0.403	6.6	LOS A	2.6	2.6 67.5		0.06	0.18	33.4
14	R2	1	3.0	0.403	6.6	LOS A	2.6	67.5	0.18	0.06	0.18	32.6
Appro	ach	524	3.0	0.403	6.6	LOS A	2.6	67.5	0.18	0.06	0.18	33.4
West:	EB Entra	ance										
5	L2	1	3.0	0.004	4.8	LOS A	0.0	0.4	0.53	0.34	0.53	34.1
2	T1	1	3.0	0.004	4.8	LOS A	0.0	0.4	0.53	0.34	0.53	34.1
12	R2	1	3.0	0.004	4.8	LOS A	0.0	0.4	0.53	0.34	0.53	33.2
Appro		3	3.0	0.004	4.8	LOSA	0.0	0.4	0.53	0.34	0.53	33.8
All Ve	hicles	1176	3.0	0.469	7.2	LOS A	3.1	79.6	0.32	0.19	0.32	33.3

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CRAWFORD, MURPHY & TILLY, INC. | Processed: Wednesday, December 19, 2018 12:29:51 PM Project: Not Saved

INTERSECTION SUMMARY

Site: 101 [Peck & Bricher - Weekday PM Peak]

Peck Road & Bricher Road Site Category: -Roundabout

Intersection Performance - Hourly Values		
Performance Measure	Vehicles	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total)	32.1 mph 1001.0 veh-mi/h 31.2 veh-h/h	32.1 mph 1201.2 pers-mi/h 37.4 pers-h/h
Demand Flows (Total) Percent Heavy Vehicles (Demand) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	1590 veh/h 3.0 % 0.558 52.5 % 2852 veh/h	1908 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	4.17 veh-h/h 9.4 sec 9.6 sec 0.0 sec 9.4 sec 6.7 sec LOS A	5.00 pers-h/h 9.4 sec 9.6 sec
95% Back of Queue - Vehicles (Worst Lane) 95% Back of Queue - Distance (Worst Lane) Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	4.3 veh 108.9 ft 0.03 608 veh/h 0.38 0.52 57.2	729 pers/h 0.38 0.52 57.2
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	458.45 \$/h 41.6 gal/h 372.9 kg/h 0.033 kg/h 0.458 kg/h 0.576 kg/h	458.45 \$/h

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

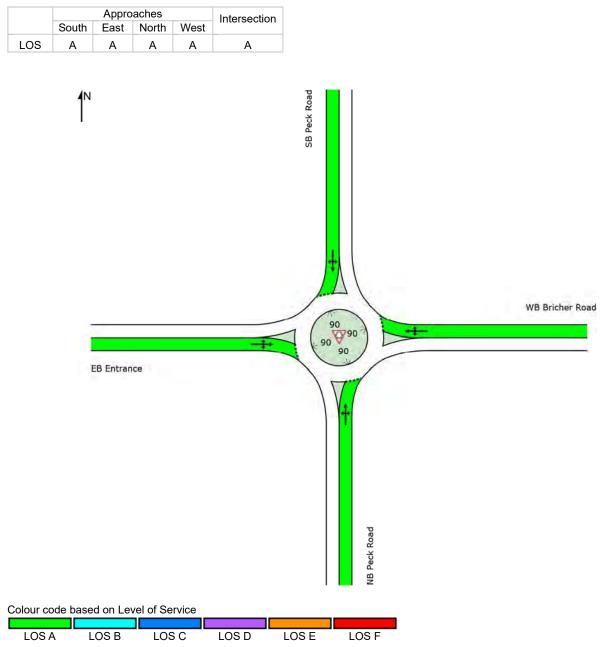
Roundabout Capacity Model: US HCM 6.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Site Model Variability Index (Iterations 3 to N): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 100.0% 94.0% 0.0%

Performance Measure	Vehicles	Persons
	venicies	Feisolis
Demand Flows (Total)	763,304 veh/y	915,965 pers/y
Delay	2,002 veh-h/y	2,402 pers-h/y
Effective Stops	291,662 veh/y	349,995 pers/y
Travel Distance	480,462 veh-mi/y	576,555 pers-mi/y
Travel Time	14,960 veh-h/y	17,952 pers-h/y
	· · · · · · · · · · · · · · · · · · ·	
Cost	220.057 \$/y	220,057 \$/y


SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CRAWFORD, MURPHY & TILLY, INC. | Processed: Wednesday, December 19, 2018 12:29:50 PM Project: Not Saved

LANE LEVEL OF SERVICE

Lane Level of Service

V Site: 101 [Peck & Bricher - Weekday PM Peak]

Peck Road & Bricher Road Site Category: -Roundabout

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CRAWFORD, MURPHY & TILLY, INC. | Processed: Wednesday, December 19, 2018 12:29:50 PM Project: Not Saved

MOVEMENT SUMMARY

Site: 101 [Peck & Bricher - Weekday PM Peak]

Peck Road & Bricher Road Site Category: -Roundabout

Movement Performance - Vehicles												
Mov ID	Turn	Demand F Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop.	Effective Stop Rate	Aver. No.	Average Speed
U		veh/h	пv %	v/c	Sec	Service	venicies veh	ft	Queueu		Cycles	mph
South: NB Pec												
3	L2	1	3.0	0.531	9.3	LOS A	3.8	96.7	0.50	0.33	0.50	32.8
8	T1	488	3.0	0.531	9.3	LOS A	3.8	96.7	0.50	0.33	0.50	32.8
18	R2	118	3.0	0.531	9.3	LOS A	3.8	96.7	0.50	0.33	0.50	31.9
Approach		608	3.0	0.531	9.3	LOS A	3.8	96.7	0.50	0.33	0.50	32.6
East:	WB Brick	ner Road										
1	L2	117	3.0	0.396	9.4	LOS A	2.1	53.5	0.65	0.67	0.72	31.8
6	T1	4	3.0	0.396	9.4	LOS A	2.1	53.5	0.65	0.67	0.72	31.8
16	R2	193	3.0	0.396	9.4	LOS A	2.1	53.5	0.65	0.67	0.72	30.9
Appro	ach	315	3.0	0.396	9.4	LOS A	2.1	53.5	0.65	0.67	0.72	31.3
North	: SB Pec	k Road										
7	L2	141	3.0	0.558	9.6	LOS A	4.3	108.9	0.48	0.29	0.48	32.1
4	T1	510	3.0	0.558	9.6	LOS A	4.3	4.3 108.9		0.29	0.48	32.1
14	R2	5	3.0	0.558	9.6	LOS A	4.3	108.9	0.48	0.29	0.48	31.3
Appro	ach	657	3.0	0.558	9.6	LOS A	4.3	108.9	0.48	0.29	0.48	32.1
West:	EB Entra	ance										
5	L2	7	3.0	0.018	6.2	LOS A	0.1	1.7	0.60	0.50	0.60	32.7
2	T1	2	3.0	0.018	6.2	LOS A	0.1	1.7	0.60	0.50	0.60	32.7
12	R2	2	3.0	0.018	6.2	LOS A	0.1	1.7	0.60	0.50	0.60	31.9
Appro	ach	11	3.0	0.018	6.2	LOS A	0.1	1.7	0.60	0.50	0.60	32.5
All Vehicles		1590	3.0	0.558	9.4	LOS A	4.3	108.9	0.52	0.38	0.53	32.1

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CRAWFORD, MURPHY & TILLY, INC. | Processed: Wednesday, December 19, 2018 12:29:50 PM Project: Not Saved

Appendix B

Crash Memorandum

Memorandum

To:	Candance Thomas, P.E.	Date:	03/08/2018
From:	Michael Moes	Re:	Crash Data for Peck Road and Bricher
Cc:	Tice Cole, P.E., PTOE		Road

CMT has reviewed the historical crash data provided by the Kane County Division of Transportation, for the years including and between 2012 to 2016, and compared this information to the projected crash volume as obtained from utilizing IHSDM-HSM Predictive Method (v14.0.0).

Historical Data is provided in appendix A of this memorandum, and in summary, showed a total of **13** crashes at this intersection between 2012 and 2016. This results in a crash rate of *2.6 crashes per year*. The year 2012 alone produced 6 of the 13 total crashes, or 46.2% of the total crashes. Of the 13 total crashes, 10, or 77%, were rear-end collisions.

Data generated from the application of the IHSDM-HSM model resulted in a predictive value of **11.64** crashes between 2012 and 2016 for the existing TWSC intersection. This results in a crash rate of *2.3* crashes per year. This data is included in this memorandum as Appendix B. The model was also run to simulate a signalized intersection, as well as a roundabout. The signalized model predicted 9.5 crashes, and the roundabout predicted 6.5 crashes.

A collision diagram showing the nature and location of the crashes has been included as Appendix C.

Intersection Type	Crash Total	Crash Rate				
Existing (Actual) – TWSC	13	2.6				
Existing (Predictive) – TWSC	11.64	2.3				
Proposed – Signalized (Predictive)	9.5	1.9				
Proposed – Roundabout (Predictive)	6.5	1.3				

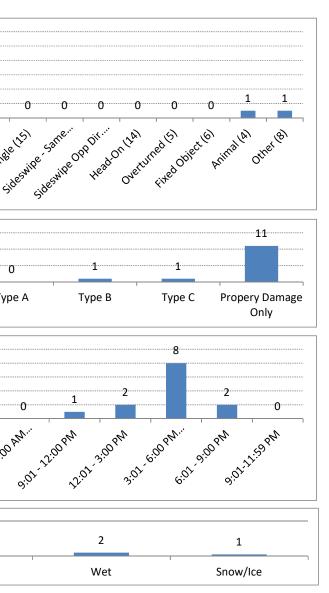
END OF MEMO

CRASH HISTORY

ocation:	Peck Road	at Bricher F	Road				From	2012	То				
	20)12	2013		20)14	20	15	20	16	Year 1	Year 5	
CRASH TYPE	Num.	%	Num.	%	Num.	%	Num.	%	Num.	%	Num.	%	
Left Turn (10L)	1	17%		0%		0%		0%		0%	1	8%	1210
Right Turn (10R)		0%		0%		0%		0%		0%	0	0%	10
Rear End (11)	4	67%	2	100%	1	100%	2	100%	1	50%	10	77%	8
Angle (15)		0%		0%		0%		0%		0%	0	0%	6
Sideswipe - Same Dir. (12)		0%		0%		0%		0%		0%	0	0%	
Sideswipe Opp Dir. (13)		0%		0%		0%		0%		0%	0	0%	
Head-On (14)		0%		0%		0%		0%		0%	0	0%	and the second
Overturned (5)		0%		0%		0%		0%		0%	0	0%	mile mile main delt
Fixed Object (6)		0%		0%		0%		0%		0%	0	0%	Let TUN LOL Reating the reatin
Animal (4)		0%		0%		0%		0%	1	50%	1	8%	o est Tun 10 ¹ Reat Ful 11 Ange 15 Solest
Other (8)	1	17%		0%		0%		0%		0%	1	8%	,
SEVERITY ⁽¹⁾	Num.	%	Num.	%	Num.	%	Num.	%	Num.	%	Num.	%	15
Fatal		0%		0%		0%		0%		0%	0	0%	10
Type A		0%		0%		0%		0%		0%	0	0%	50
Туре В	1	17%		0%		0%		0%		0%	1	8%	0
Type C	1	17%		0%		0%		0%		0%	1	8%	Fatal Type A
Propery Damage Only	4	67%	2	100%	1	100%	2	100%	2	100%	11	85%	
TIME OF DAY	Num.	%	Num.	%	Num.	%	Num.	%	Num.	%	Num.	%	10 _
12:00 - 3:00 AM		0%		0%		0%		0%		0%	0	0%	8
3:01 -6:00 AM		0%		0%		0%		0%		0%	0	0%	6
6:01 - 9:00 AM ⁽²⁾		0%		0%		0%		0%		0%	0	0%	4
9:01 - 12:00 PM		0%		0%	1	100%		0%		0%	1	8%	
12:01 - 3:00 PM	2	33%		0%		0%		0%		0%	2	15%	N N N
3:01 - 6:00 PM ⁽²⁾	3	50%	2	100%		0%	2	100%	1	50%	8	62%	72:00 ^{-3;01} ^{6;01} ^{6;01} ^{9;00} ⁶ ¹
6:01 - 9:00 PM	1	17%		0%		0%		0%	1	50%	2	15%	10, 10, 01
9:01-11:59 PM		0%		0%		0%		0%		0%	0	0%	· · · · · · · · · · · · · · · · · · ·
ROADWAY CONDITIONS	Num.	%	Num.	%	Num.	%	Num.	%	Num.	%	Num.	%	2010
Dry	4	67%	1	50%	1	100%	2	100%	2	100%	10	77%	10
Wet	1	17%	1	50%		0%		0%		0%	2	15%	0
Snow/Ice	1	17%		0%		0%		0%		0%	1	8%	Dry
TOTAL CRASHES	6	46%	2	15%	1	8%	2	15%	2	15%	13		L

Notes:

Data Source: Illinois Department of Transportation


Table Prepared by: Kane County Division of Transportation

⁽¹⁾ Type A - Incapacitating Injury; Type B - Nonincapacitating Injury; Type C - Reported, not evident

⁽²⁾ AM/PM peak traffic periods

APPENDIX A

5 Year Statistics

APPENDIX B

Interactive Highway Safety Design Model

Crash Prediction Evaluation Report

Disclaimer

The Interactive Highway Design Model (IHSDM) software is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its content or use thereof. This document does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade and manufacturers' names may appear in this software and documentation only because they are considered essential to the objective of the software.

Limited Warranty and Limitations of Remedies

This software product is provided "as-is," without warranty of any kind-either expressed or implied (but not limited to the implied warranties of merchantability and fitness for a particular purpose). The FHWA do not warrant that the functions contained in the software will meet the end-user's requirements or that the operation of the software will be uninterrupted and error-free.

Under no circumstances will the FHWA be liable to the end-user for any damages or claimed lost profits, lost savings, or other incidental or consequential damages rising out of the use or inability to use the software (even if these organizations have been advised of the possibility of such damages), or for any claim by any other party.

Notice

The use of the IHSDM software is being done strictly on a voluntary basis. In exchange for provision of IHSDM, the user agrees that the Federal Highway Administration (FHWA), U.S. Department of Transportation and any other agency of the Federal Government shall not be responsible for any errors, damage or other liability that may result from any and all use of the software, including installation and testing of the software. The user further agrees to hold the FHWA and the Federal Government harmless from any resulting liability. The user agrees that this hold harmless provision shall flow to any person to whom or any entity to which the user provides the IHSDM software. It is the user's full responsibility to inform any person to whom or any entity to which it provides the IHSDM software of this hold harmless provision.

Table of Contents

Report Overview	1
Section Types	2
Section 1 Evaluation	2

List of Tables

Table Evaluation Highway - Homogeneous Segments (Section 1)	4
Table Evaluation Intersection (Section 1)	5
Table Predicted Highway Crash Rates and Frequencies (Section 1)	6
Table Predicted Crash Frequencies and Rates by Highway Segment/Intersection (Section 1)	7
Table Predicted Crash Frequencies and Rates by Horizontal Design Element (Section 1)	8
Table Predicted Crash Frequencies by Year (Section 1)	8
Table Predicted Five Lane or Fewer Segment Crash Type Distribution (Section 1)	9

List of Figures

Figure Crash Prediction Summary (Section 1)

Report Overview

Report Generated: Dec 14, 2018 11:05 AM Report Template: System: Multi-Page [System] (mlcpm2, Dec 6, 2018 10:06 AM)

Evaluation Date: Fri Dec 14 09:48:50 CST 2018 **IHSDM Version:** v14.0.0 (Sep 26, 2018) **Crash Prediction Module:** v9.0.0 (Sep 26, 2018)

User Name: mmoes Organization Name: CMT Phone: 630-820-1022 E-Mail: mmoes@cmtengr.com

Project Title: Peck and Bricher **Project Comment:** Created using wizard **Project Unit System:** U.S. Customary

Highway Title: Peck Road Highway Comment: Created Fri Dec 14 08:59:41 CST 2018 Highway Version: 2

Evaluation Title: Evaluation 2Evaluation Comment: Created Fri Dec 14 09:48:04 CST 2018

Minimum Location: 1992+00.000 Maximum Location: 2010+00.000 Policy for Superelevation: AASHTO 2011 U.S. Customary Calibration: HSM Configuration Crash Distribution: HSM Configuration Model/CMF: HSM Configuration Empirical-Bayes Analysis: None First Year of Analysis: 2012 Last Year of Analysis: 2016

Section Types

Section 1 Evaluation

Section: Section 1 Evaluation Start Location: 1992+00.000 Evaluation End Location: 2010+00.000 Area Type: Suburban Functional Class: Arterial Type of Alignment: Undivided, Two Lane Model Category: Urban/Suburban Arterial Calibration Factor: 2U=1.0; 3ST=1.0;

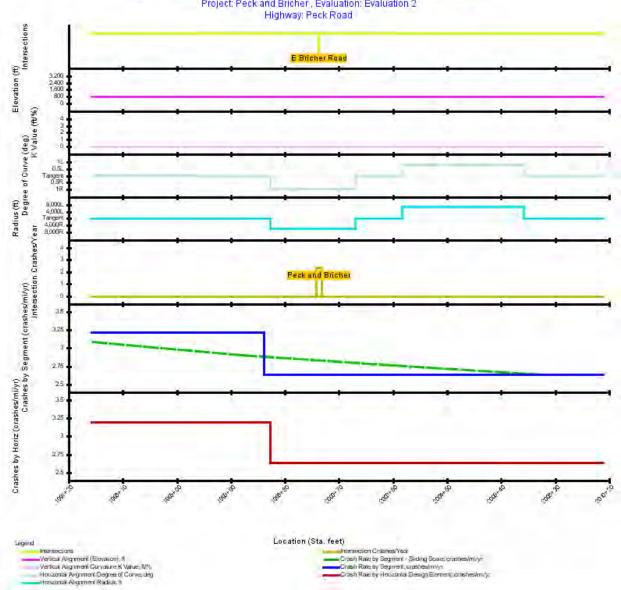


Figure 1. Crash Prediction Summary (Section 1)

Seg. No.	Typ e	Start Location (Sta. ft)	End Location (Sta. ft)	Lengt h (ft)	Lengt h(mi)	AADT	Number Major Commericial Driveways	Number Minor Commericial Driveways	Number Major Industial/Institu tional		Number Major Residential Driveways	Number Minor Residential Driveways	Number Other Driveways	Lighting	Automated Speed Enforcement	Density (fixed objects/ mi)	n	Тур	Effective Median Width (ft)	Speed Level	Number Rail Highway Crossings	Average Shoulder Width (ft)	
1	2U	1992+00.00 0	1998+08.00 0	608.00	0.1152	2012-2016: 12,160	0	0	0	0	1	0	0	false	false	0.0	0.00	Non e	0.00	Intermediate/High	0	0.00	12.00
2	2U	1998+08.00 0	1998+30.07 0	22.07	0.0042	2012-2016: 12,160	0	0	0	0	0	0	0	false	false	0.0	0.00	Non e	0.00	Intermediate/High	0	0.00	12.00
3	2U	1998+30.07 0	1999+42.00 0	111.93	0.0212	2012-2016: 12,160	0	0	0	0	0	0	0	false	false	0.0	0.00	Non e	0.00	Intermediate/High	0	0.00	12.00
4	2U	1999+42.00 0	2000+41.00 0	99.00	0.0187	2012-2016: 12,160	0	0	0	0	0	0	0	false	false	0.0	0.00	Non e	0.00	Intermediate/High	0	0.00	12.00
5	2U	2000+41.00 0	2001+27.93 0	86.93	0.0165	2012-2016: 12,160	0	0	0	0	0	0	0	false	false	0.0	0.00	Non e	0.00	Intermediate/High	0	0.00	12.00
6	2U	2001+27.93 0	2001+92.00 0	64.07	0.0121	2012-2016: 12,160	0	0	0	0	0	0	0	false	false	0.0	0.00	Non e	0.00	Intermediate/High	0	0.00	12.00
7	2U	2001+92.00 0	2002+93.30 0	101.30	0.0192	2012-2016: 12,160	0	0	0	0	0	0	0	false	false	0.0	0.00	Non e	0.00	Intermediate/High	0	0.00	12.00
8	2U	2002+93.30 0	2007+20.78 0	427.48	0.0810	2012-2016: 12,160	0	0	0	0	0	0	0	false	false	0.0	0.00	Non e	0.00	Intermediate/High	0	0.00	12.00
9	2U	2007+20.78 0	2010+00.00 0	279.22	0.0529	2012-2016: 12,160	0	0	0	0	0	0	0	false	false	0.0	0.00	Non e	0.00	Intermediate/High	0	0.00	12.00

 Table 1. Evaluation Highway - Homogeneous Segments (Section 1)

Inter No.		Location (Sta. ft)	Major AADT	Minor AADT	Legs	Traffic Control	Intersection Type	Approaches w/Left Turn Lanes	Approaches w/Right Turn Lanes	 Pedestrian Volume (crossings/day)	Lighted at Night	Red Light Camera	School Nearby	Numbe r of Bus Stops	Number of Alcohol Sales Establishments	Max Lanes Crossed	Replaced with Roundabout
	1 Peck and Bricher	2000+00.000	2012-2016: 12,160	2012-2016: 5,500	3	Stop-Controlled	Three-Legged w/STOP control	0	0		false	false	false				false

Table 2. Evaluation Intersection (Section 1)

First Year of Analysis	2012							
Last Year of Analysis	2016							
Evaluated Length (mi)	0.3409							
Average Future Road AADT (vpd)	12,160							
Predicted Crashes								
Total Crashes	16.46							
Fatal and Injury Crashes	5.20							
Property-Damage-Only Crashes	11.26							
Percent of Total Predicted Crashes								
Percent Fatal and Injury Crashes (%)	32							
Percent Property-Damage-Only Crashes (%)	68							
Predicted Crash Rate								
Crash Rate (crashes/mi/yr)	9.6575							
FI Crash Rate (crashes/mi/yr)	3.0520							
PDO Crash Rate (crashes/mi/yr)	6.6056							
Predicted Travel Crash Rate								
Total Travel (million veh-mi)	7.57							
Travel Crash Rate (crashes/million veh-mi)	2.18							
Travel FI Crash Rate (crashes/million veh-mi)	0.69							
Travel PDO Crash Rate (crashes/million veh-mi)	1.49							

Table 3. Predicted Highway Crash Rates and Frequencies (Section 1)

Segment Number/Intersection Name/Cross Road	Start Location (Sta. ft)	End Location (Sta. ft)	Length (mi)	Total Predicted Crashes for Evaluation Period	Predicted Total Crash Frequency (crashes/yr)	Predicted FI Crash Frequency (crashes/yr)	Predicted PDO Crash Frequency (crashes/yr)	Predicted Crash Rate (crashes/mi/y r)	Predicted Travel Crash Rate (crashes/milli on veh-mi)	Predicted Intersection Travel Crash Rate (crashes/million veh)
1	1992+00.000	1998+08.000	0.1152	1.853	0.3707	0.1054	0.2653	3.2190	0.72	
2	1998+08.000	1998+30.070	0.0042	0.055	0.0110	0.0030	0.0080	2.6295	0.59	
3	1998+30.070	1999+42.000	0.0212	0.279	0.0557	0.0153	0.0404	2.6295	0.59	
4	1999+42.000	2000+41.000	0.0187	0.246	0.0493	0.0135	0.0358	2.6295	0.59	
Peck and Bricher	2000+00.000			11.640	2.3280	0.7722	1.5559			0.43
5	2000+41.000	2001+27.930	0.0165	0.216	0.0433	0.0119	0.0314	2.6295	0.59	
6	2001+27.930	2001+92.000	0.0121	0.160	0.0319	0.0088	0.0232	2.6295	0.59	
7	2001+92.000	2002+93.300	0.0192	0.252	0.0504	0.0138	0.0366	2.6295	0.59	
8	2002+93.300	2007+20.780	0.0810	1.064	0.2129	0.0584	0.1545	2.6295	0.59	
9	2007+20.780	2010+00.000	0.0529	0.695	0.1391	0.0381	0.1009	2.6295	0.59	
All Segments			0.3409	4.822	0.9643	0.2683	0.6960	2.8286		
All Intersections				11.640	2.3280	0.7722	1.5559			
Total			0.3409	16.462	3.2923	1.0404	2.2519			

 Table 4. Predicted Crash Frequencies and Rates by Highway Segment/Intersection (Section 1)

Title	Start Location (Sta. ft)	End Location (Sta. ft)	Length (mi)	Total Predicted Crashes for Evaluation Period	Predicted Total Crash Frequency (crashes/yr)	Predicted FI Crash Frequency (crashes/yr)	Predicted PDO Crash Frequency (crashes/yr)	Predicted Crash Rate (crashes/mi /yr)	Predicted Travel Crash Rate (crashes/mi llion veh- mi)
Tangent	1992+00.000	1998+30.070	0.1193	1.908	0.3817	0.1084	0.2732	3.1984	0.72
Simple Curve 1	1998+30.070	2001+27.930	0.0564	0.742	0.1483	0.0407	0.1076	2.6295	0.59
Tangent	2001+27.930	2002+93.300	0.0313	0.412	0.0824	0.0226	0.0598	2.6295	0.59
Simple Curve 2	2002+93.300	2007+20.780	0.0810	1.064	0.2129	0.0584	0.1545	2.6295	0.59
Tangent	2007+20.780	2010+00.000	0.0529	0.695	0.1391	0.0381	0.1009	2.6295	0.59

 Table 5. Predicted Crash Frequencies and Rates by Horizontal Design Element (Section 1)

 Table 6. Predicted Crash Frequencies by Year (Section 1)

Year	Total Crashes	FI Crashes	Percent FI (%)	PDO Crashes	Percent PDO (%)
2012	3.29	1.04	0.316	2.25	0.684
2013	3.29	1.04	0.316	2.25	0.684
2014	3.29	1.04	0.316	2.25	0.684
2015	3.29	1.04	0.316	2.25	0.684
2016	3.29	1.04	0.316	2.25	0.684
Total	16.46	5.20	0.316	11.26	0.684
Average	3.29	1.04	0.316	2.25	0.684

Note: *Fatal and Injury Crashes* and *Property Damage Only Crashes* do not necessarily sum up to *Total Crashes* because the distribution of these three crashes had been derived independently.

Note: *Fatal and Injury Crashes* and *Property Damage Only Crashes* do not necessarily sum up to *Total Crashes* because the distribution of these three crashes had been derived independently.

Note: *Fatal and Injury Crashes* and *Property Damage Only Crashes* do not necessarily sum up to *Total Crashes* because the distribution of these three crashes had been derived independently.

		Fatal an	d Injury	Property Da	amage Only	То	tal
Element Type	Crash Type	Crashes	Crashes (%)	Crashes	Crashes (%)	Crashes	Crashes (%)
Highway Segment	Collision with Animal	0.01	0.0	0.07	0.4	0.08	0.5
Highway Segment	Collision with Bicycle	0.02	0.1	0.00	0.0	0.02	0.1
Highway Segment	Collision with Fixed Object	0.21	1.3	0.83	5.0	1.05	6.4
Highway Segment	Collision with Other Object	0.00	0.0	0.01	0.1	0.02	0.1
Highway Segment	Other Single-vehicle Collision	0.07	0.4	0.18	1.1	0.25	1.5
Highway Segment	Collision with Pedestrian	0.02	0.1	0.00	0.0	0.02	0.1
Highway Segment	Total Segment Single Vehicle Crashes	0.34	2.1	1.09	6.7	1.44	8.7
Highway Segment	Angle Collision	0.08	0.5	0.17	1.0	0.25	1.5
Highway Segment	Driveway-related Collision	0.11	0.7	0.23	1.4	0.34	2.0
Highway Segment	Head-on Collision	0.06	0.4	0.01	0.1	0.07	0.4
Highway Segment	Other Multi-vehicle Collision	0.03	0.2	0.11	0.7	0.14	0.9
Highway Segment	Rear-end Collision	0.65	4.0	1.68	10.2	2.33	14.2
Highway Segment	Sideswipe, Opposite Direction Collision	0.07	0.4	0.12	0.7	0.18	1.1
Highway Segment	Sideswipe, Same Direction Collision	0.01	0.1	0.07	0.4	0.08	0.5
Highway Segment	Total Segment Multiple Vehicle Crashes	1.00	6.1	2.38	14.5	3.39	20.6
Highway Segment	Total Highway Segment Crashes	1.34	8.1	3.48	21.1	4.82	29.3
Intersection	Collision with Animal	0.00	0.0	0.03	0.2	0.03	0.2
Intersection	Collision with Bicycle	0.18	1.1	0.00	0.0	0.18	1.1
Intersection	Collision with Fixed Object	0.47	2.9	1.16	7.0	1.63	9.9
Intersection	Non-Collision	0.07	0.4	0.04	0.3	0.11	0.6
Intersection	Collision with Other Object	0.06	0.3	0.13	0.8	0.18	1.1
Intersection	Other Single-vehicle Collision	0.02	0.1	0.03	0.2	0.06	0.3
Intersection	Collision with Parked Vehicle	0.00	0.0	0.00	0.0	0.01	0.0
Intersection	Collision with Pedestrian	0.24	1.4	0.00	0.0	0.24	1.4
Intersection	Total Intersection Single Vehicle Crashes	1.03	6.3	1.39	8.4	2.42	14.7
Intersection	Angle Collision	0.97	5.9	1.67	10.2	2.64	16.1
Intersection	Head-on Collision	0.13	0.8	0.15	0.9	0.27	1.7
Intersection	Other Multi-vehicle Collision	0.18	1.1	1.50	9.1	1.69	10.2
Intersection	Rear-end Collision	1.19	7.2	2.81	17.1	4.00	24.3
Intersection	Sideswipe	0.36	2.2	0.26	1.6	0.61	3.7
Intersection	Total Intersection Multiple Vehicle Crashes	2.83	17.2	6.39	38.8	9.22	56.0
Intersection	Total Intersection Crashes	3.86	23.5	7.78	47.3	11.64	70.7
	Total Crashes	5.20	31.6	11.26	68.4	16.46	100.0

Table 7. Predicted Five Lane or Fewer Segment Crash Type Distribution (Section 1)

Note: *Fatal and Injury Crashes* and *Property Damage Only Crashes* do not necessarily sum up to *Total Crashes* because the distribution of these three crashes had been derived independently.

Interactive Highway Safety Design Model

Crash Prediction Evaluation Report

Disclaimer

The Interactive Highway Design Model (IHSDM) software is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its content or use thereof. This document does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade and manufacturers' names may appear in this software and documentation only because they are considered essential to the objective of the software.

Limited Warranty and Limitations of Remedies

This software product is provided "as-is," without warranty of any kind-either expressed or implied (but not limited to the implied warranties of merchantability and fitness for a particular purpose). The FHWA do not warrant that the functions contained in the software will meet the end-user's requirements or that the operation of the software will be uninterrupted and error-free.

Under no circumstances will the FHWA be liable to the end-user for any damages or claimed lost profits, lost savings, or other incidental or consequential damages rising out of the use or inability to use the software (even if these organizations have been advised of the possibility of such damages), or for any claim by any other party.

Notice

The use of the IHSDM software is being done strictly on a voluntary basis. In exchange for provision of IHSDM, the user agrees that the Federal Highway Administration (FHWA), U.S. Department of Transportation and any other agency of the Federal Government shall not be responsible for any errors, damage or other liability that may result from any and all use of the software, including installation and testing of the software. The user further agrees to hold the FHWA and the Federal Government harmless from any resulting liability. The user agrees that this hold harmless provision shall flow to any person to whom or any entity to which the user provides the IHSDM software. It is the user's full responsibility to inform any person to whom or any entity to which it provides the IHSDM software of this hold harmless provision.

Table of Contents

Report Overview	1
Section Types	2
Section 1 Evaluation	2

List of Tables

Table Evaluation Highway - Homogeneous Segments (Section 1)	4
Table Evaluation Intersection (Section 1)	5
Table Predicted Highway Crash Rates and Frequencies (Section 1)	6
Table Predicted Crash Frequencies and Rates by Highway Segment/Intersection (Section 1)	7
Table Predicted Crash Frequencies and Rates by Horizontal Design Element (Section 1)	7
Table Predicted Crash Frequencies by Year (Section 1)	8
Table Predicted Five Lane or Fewer Segment Crash Type Distribution (Section 1)	9

List of Figures

Figure Crash Prediction Summary (Section 1)

Report Overview

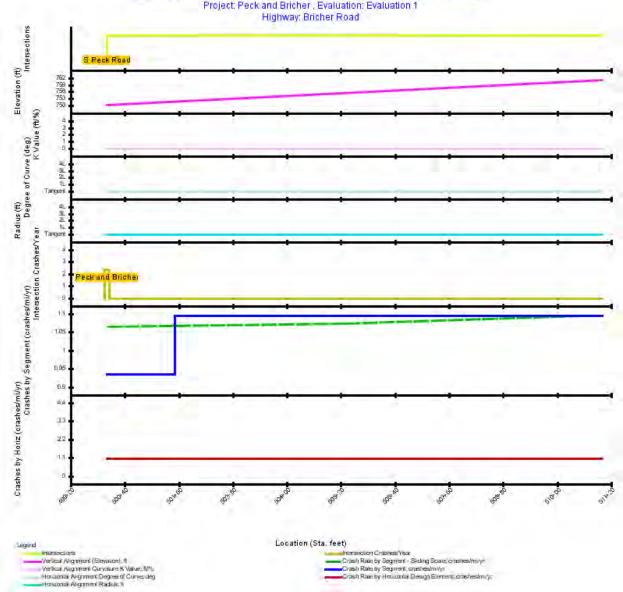
Report Generated: Dec 14, 2018 10:58 AM Report Template: System: Multi-Page [System] (mlcpm2, Dec 6, 2018 10:06 AM)

Evaluation Date: Fri Dec 14 09:44:47 CST 2018 **IHSDM Version:** v14.0.0 (Sep 26, 2018) **Crash Prediction Module:** v9.0.0 (Sep 26, 2018)

User Name: mmoes Organization Name: CMT Phone: 630-820-1022 E-Mail: mmoes@cmtengr.com

Project Title: Peck and Bricher **Project Comment:** Created using wizard **Project Unit System:** U.S. Customary

Highway Title: Bricher Road Highway Comment: Created using wizard Highway Version: 1


Evaluation Title: Evaluation 1 **Evaluation Comment:** Created Fri Dec 14 09:43:16 CST 2018

Minimum Location: 500+00.000 Maximum Location: 511+00.000 Policy for Superelevation: AASHTO 2011 U.S. Customary Calibration: HSM Configuration Crash Distribution: HSM Configuration Model/CMF: HSM Configuration Empirical-Bayes Analysis: None First Year of Analysis: 2012 Last Year of Analysis: 2016

Section Types

Section 1 Evaluation

Section: Section 1 Evaluation Start Location: 500+00.000 Evaluation End Location: 511+00.000 Area Type: Suburban Functional Class: Arterial Type of Alignment: Undivided, Two Lane Model Category: Urban/Suburban Arterial Calibration Factor: 2U=1.0; 3ST=1.0;

Crash Prediction Summary, Section 1 (Undivided, Two Lane; Suburban; Arterial) Project: Peck and Bricher , Evaluation: Evaluation 1

Figure 1. Crash Prediction Summary (Section 1)

Seg No	Typ	Start Location (Sta. ft)	End Location (Sta. ft)	Lengt h (ft)	Lengt h(mi)		Number Major Commericial Driveways		Inductiol/Institu	Number Minor Industial/Institu tional		Number Minor Residential Driveways	Number Other Driveways	Lighting	Automated	Density (fixed objects/ mi)	n Tyj	Effective Median Width (ft)	Speed Level		Average Shoulder Width (ft)	
	2U	500+00.000	500+67.000	67.00	0.0127	2012-2016: 5,500	0	0	0	0	0	0	0	true	false	0.0	0.00 e	0.00	Intermediate/High	0	0.00	12.00
:	2U	500+67.000	501+51.000	84.00	0.0159	2012-2016: 5,500	0	0	0	0	0	0	0	true	false	0.0	0.00 e Nor	0.00	Intermediate/High	0	0.00	12.00
-	2U	501+51.000	511+00.000	949.00	0.1797	2012-2016: 5,500	0	0	0	0	1	0	0	true	false	0.0	0.00 e Nor	0.00	Intermediate/High	0	0.00	12.00

 Table 1. Evaluation Highway - Homogeneous Segments (Section 1)

Int N		Title	Location (Sta. ft)	Major AADT	Minor AADT	Legs	Traffic Control	Intersection Type	Approaches w/Left Turn Lanes	w/Right Turn	(Pedestrian Volume (crossings/day)	Lighted at Night	Red Light Camera	School Nearby	Numbe r of Bus Stops	Number of Alcohol Sales Establishments	Max Lanes Crossed	Replaced with Roundabout
	1	Peck and Bricher	500+00.000	2012-2016: 12,160	2012-2016: 5,500	3	Stop-Controlled	Three-Legged w/STOP control	0	0			false	false	false				false

Table 2. Evaluation Intersection (Section 1)

First Year of Analysis	2012
Last Year of Analysis	2016
Evaluated Length (mi)	0.2083
Average Future Road AADT (vpd)	5,500
Predicted Crashes	
Total Crashes	12.76
Fatal and Injury Crashes	4.19
Property-Damage-Only Crashes	8.57
Percent of Total Predicted Crashes	
Percent Fatal and Injury Crashes (%)	33
Percent Property-Damage-Only Crashes (%)	67
Predicted Crash Rate	
Crash Rate (crashes/mi/yr)	12.2476
FI Crash Rate (crashes/mi/yr)	4.0239
PDO Crash Rate (crashes/mi/yr)	8.2237
Predicted Travel Crash Rate	
Total Travel (million veh-mi)	2.09
Travel Crash Rate (crashes/million veh-mi)	6.10
Travel FI Crash Rate (crashes/million veh-mi)	2.00
Travel PDO Crash Rate (crashes/million veh-mi)	4.10
Travel PDO Crash Rate (crashes/million veh-mi)	4.10

Table 3. Predicted Highway Crash Rates and Frequencies (Section 1)

Segment Number/Intersection Name/Cross Road	Start Location (Sta. ft)	End Location (Sta. ft)	Length (mi)	Total Predicted Crashes for Evaluation Period	Predicted Total Crash Frequency (crashes/yr)	Predicted FI Crash Frequency (crashes/yr)	Predicted PDO Crash Frequency (crashes/yr)	Predicted Crash Rate (crashes/mi/y r)	Predicted Travel Crash Rate (crashes/milli on veh-mi)	Predicted Intersection Travel Crash Rate (crashes/million veh)
Peck and Bricher	500+00.000			11.640	2.3280	0.7722	1.5559			0.43
1	500+00.000	500+67.000	0.0127	0.059	0.0119	0.0035	0.0084	0.9357	0.47	
2	500+67.000	501+51.000	0.0159	0.074	0.0149	0.0043	0.0106	0.9357	0.47	
3	501+51.000	511+00.000	0.1797	0.984	0.1968	0.0584	0.1384	1.0949	0.55	
All Segments			0.2083	1.118	0.2235	0.0661	0.1574	1.0730		
All Intersections				11.640	2.3280	0.7722	1.5559			
Total			0.2083	12.758	2.5516	0.8383	1.7133			

 Table 4. Predicted Crash Frequencies and Rates by Highway Segment/Intersection (Section 1)

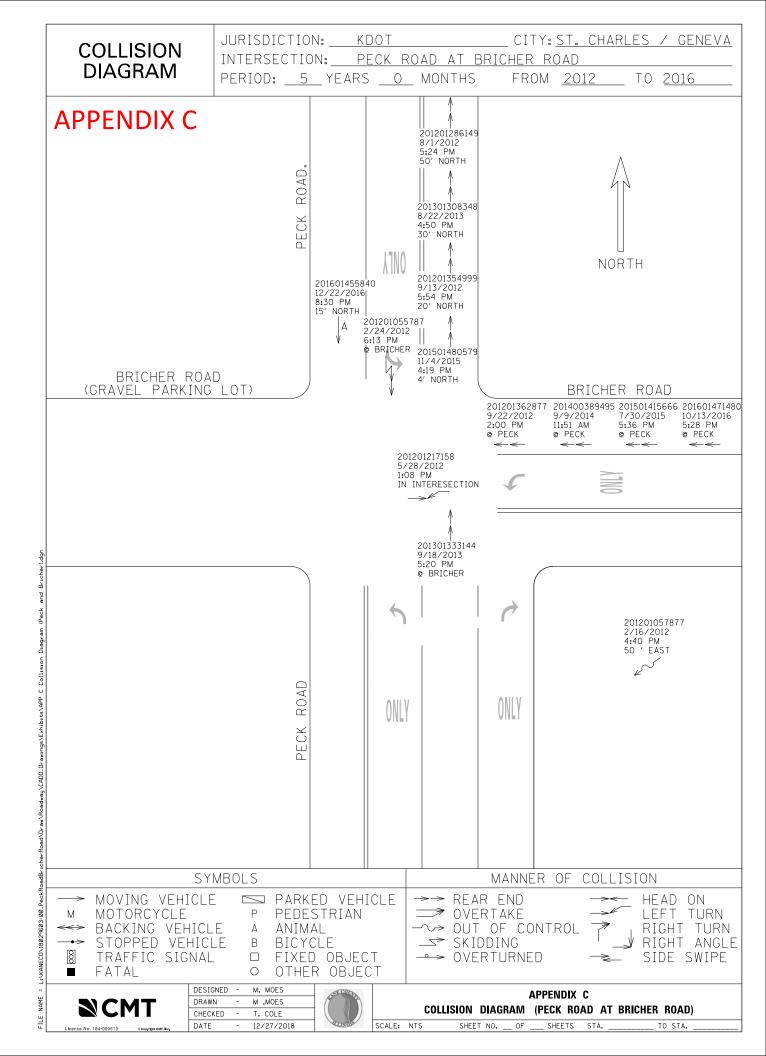
Table 5. Predicted Crash Frequencies and Rates by Horizontal Design Element (Section 1)

Title	Start Location (Sta. ft)	End Location (Sta. ft)	Length (mi)	Total Predicted Crashes for Evaluation Period	Predicted Total Crash Frequency (crashes/yr)	Predicted FI Crash Frequency (crashes/yr)	Predicted PDO Crash Frequency (crashes/yr)	Predicted Crash Rate (crashes/mi/yr)	Predicted Travel Crash Rate (crashes/million veh-mi)
Tangent	500+00.000	511+00.000	0.2083	1.118	0.2235	0.0661	0.1574	1.0730	0.54

Year	Total Crashes	FI Crashes	Percent FI (%)	PDO Crashes	Percent PDO (%)
2012	2.55	0.84	0.329	1.71	0.671
2013	2.55	0.84	0.329	1.71	0.671
2014	2.55	0.84	0.329	1.71	0.671
2015	2.55	0.84	0.329	1.71	0.671
2016	2.55	0.84	0.329	1.71	0.671
Total	12.76	4.19	0.329	8.57	0.671
Average	2.55	0.84	0.329	1.71	0.671

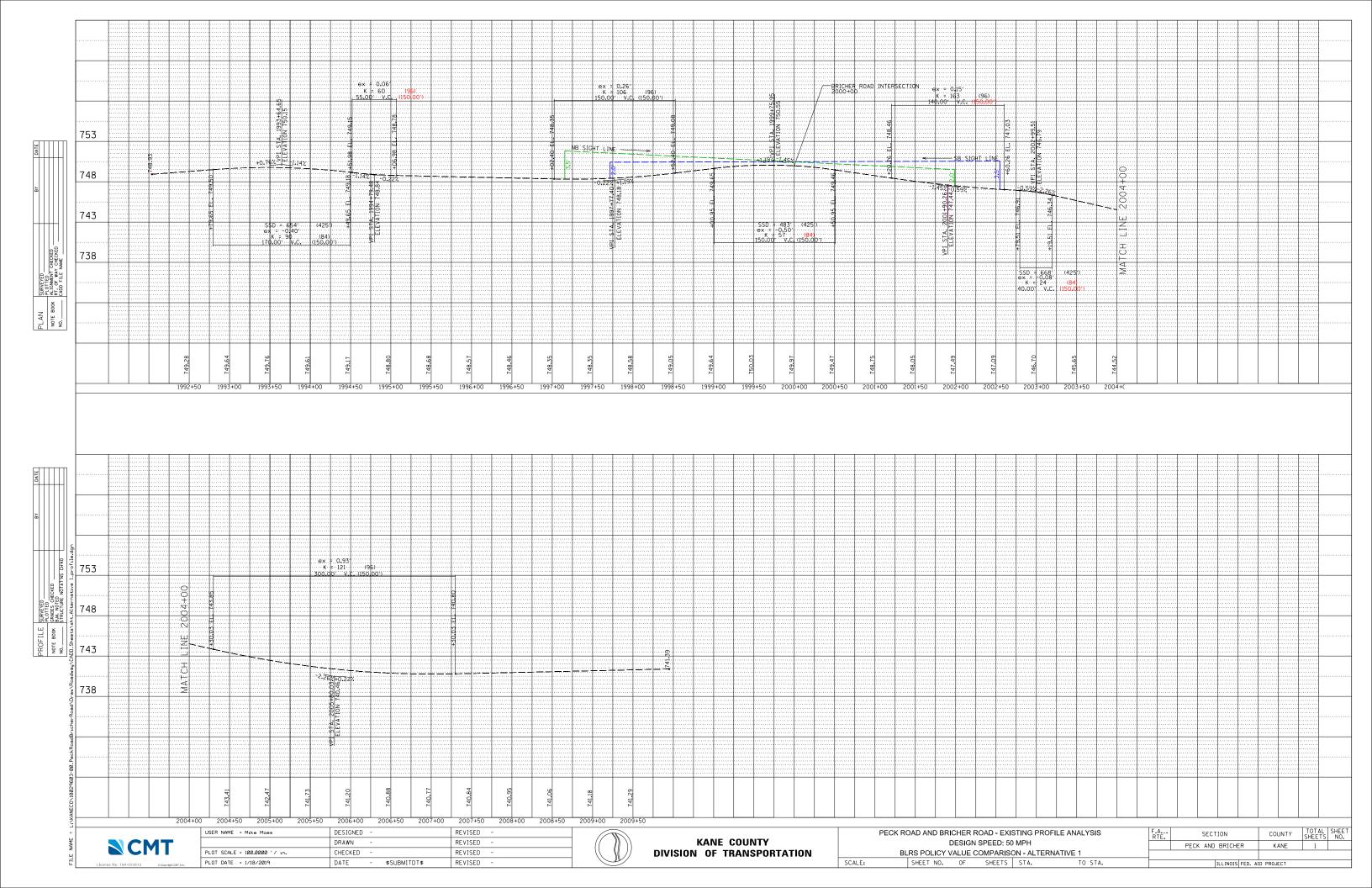
 Table 6. Predicted Crash Frequencies by Year (Section 1)

Note: *Fatal and Injury Crashes* and *Property Damage Only Crashes* do not necessarily sum up to *Total Crashes* because the distribution of these three crashes had been derived independently.

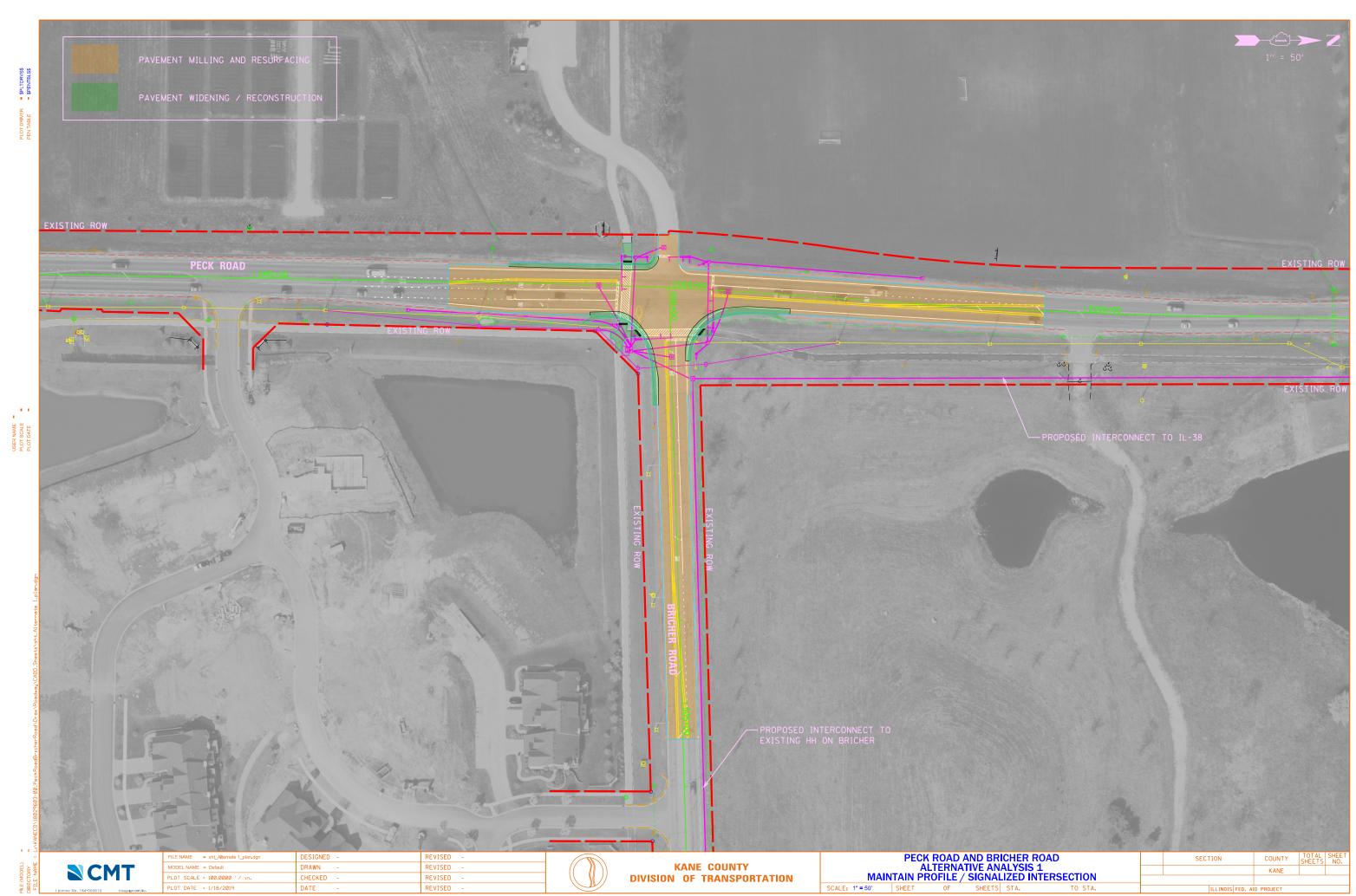

Note: *Fatal and Injury Crashes* and *Property Damage Only Crashes* do not necessarily sum up to *Total Crashes* because the distribution of these three crashes had been derived independently.

Note: *Fatal and Injury Crashes* and *Property Damage Only Crashes* do not necessarily sum up to *Total Crashes* because the distribution of these three crashes had been derived independently.

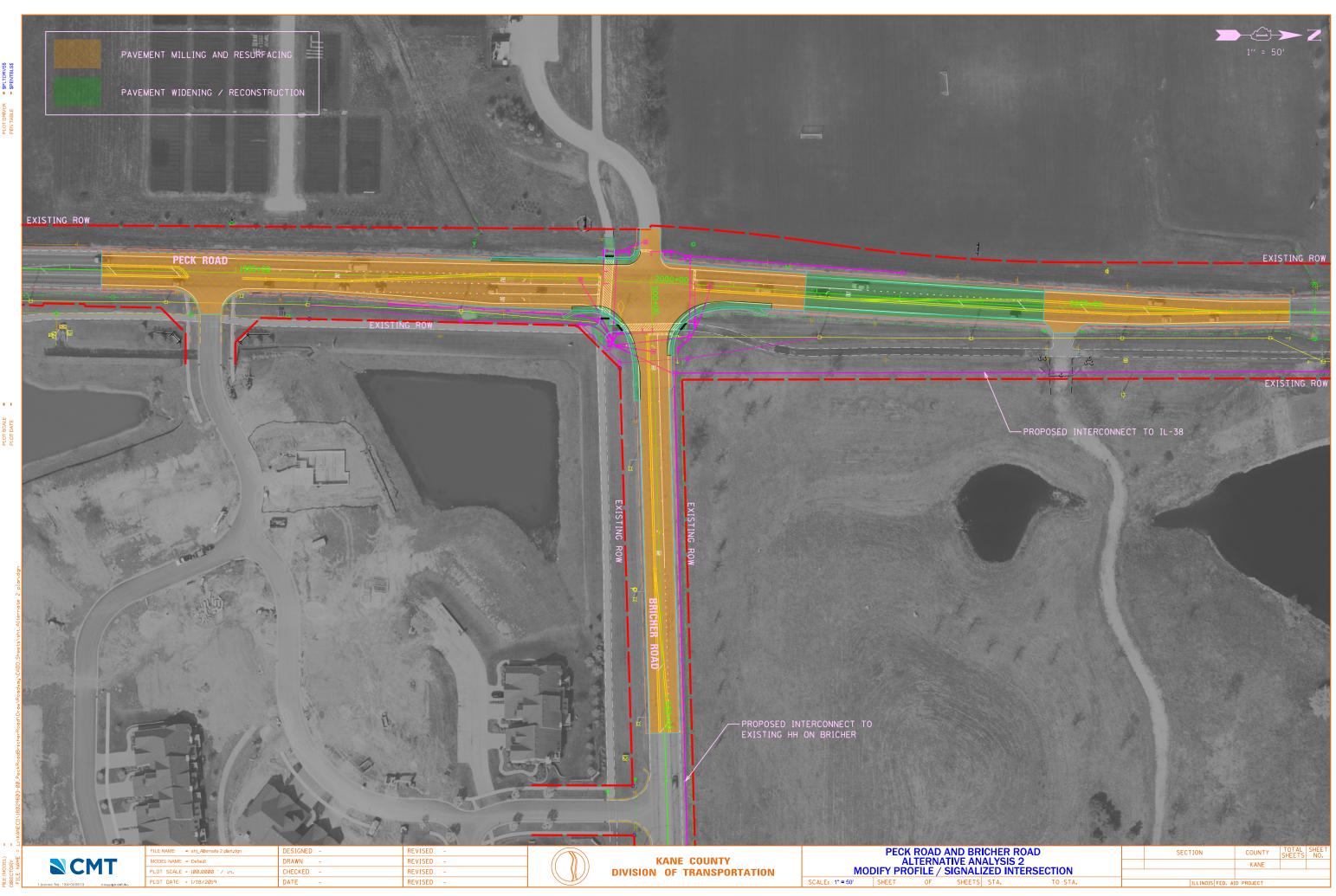
		Fatal an	d Injury	Property Da	amage Only	То	tal
Element Type	Crash Type	Crashes	Crashes (%)	Crashes	Crashes (%)	Crashes	Crashes (%)
Highway Segment	Collision with Animal	0.00	0.0	0.02	0.2	0.03	0.2
Highway Segment	Collision with Bicycle	0.00	0.0	0.00	0.0	0.00	0.0
Highway Segment	Collision with Fixed Object	0.10	0.8	0.28	2.2	0.38	3.0
Highway Segment	Collision with Other Object	0.00	0.0	0.01	0.0	0.01	0.0
Highway Segment	Other Single-vehicle Collision	0.03	0.3	0.06	0.5	0.09	0.7
Highway Segment	Collision with Pedestrian	0.01	0.0	0.00	0.0	0.01	0.0
Highway Segment	Total Segment Single Vehicle Crashes	0.15	1.2	0.37	2.9	0.52	4.1
Highway Segment	Angle Collision	0.01	0.1	0.03	0.2	0.04	0.3
Highway Segment	Driveway-related Collision	0.05	0.4	0.10	0.8	0.14	1.1
Highway Segment	Head-on Collision	0.01	0.1	0.00	0.0	0.01	0.1
Highway Segment	Other Multi-vehicle Collision	0.00	0.0	0.02	0.1	0.02	0.2
Highway Segment	Rear-end Collision	0.10	0.8	0.25	2.0	0.35	2.7
Highway Segment	Sideswipe, Opposite Direction Collision	0.01	0.1	0.02	0.1	0.03	0.2
Highway Segment	Sideswipe, Same Direction Collision	0.00	0.0	0.01	0.1	0.01	0.1
Highway Segment	Total Segment Multiple Vehicle Crashes	0.18	1.4	0.42	3.3	0.60	4.7
Highway Segment	Total Highway Segment Crashes	0.33	2.6	0.79	6.2	1.12	8.8
Intersection	Collision with Animal	0.00	0.0	0.03	0.2	0.03	0.2
Intersection	Collision with Bicycle	0.18	1.4	0.00	0.0	0.18	1.4
Intersection	Collision with Fixed Object	0.47	3.7	1.16	9.1	1.63	12.8
Intersection	Non-Collision	0.07	0.5	0.04	0.3	0.11	0.8
Intersection	Collision with Other Object	0.06	0.4	0.13	1.0	0.18	1.4
Intersection	Other Single-vehicle Collision	0.02	0.2	0.03	0.3	0.06	0.4
Intersection	Collision with Parked Vehicle	0.00	0.0	0.00	0.0	0.01	0.0
Intersection	Collision with Pedestrian	0.24	1.8	0.00	0.0	0.24	1.8
Intersection	Total Intersection Single Vehicle Crashes	1.03	8.1	1.39	10.9	2.42	19.0
Intersection	Angle Collision	0.97	7.6	1.67	13.1	2.64	20.7
Intersection	Head-on Collision	0.13	1.0	0.15	1.2	0.27	2.1
Intersection	Other Multi-vehicle Collision	0.18	1.4	1.50	11.8	1.69	13.2
Intersection	Rear-end Collision	1.19	9.3	2.81	22.0	4.00	31.4
Intersection	Sideswipe	0.36	2.8	0.26	2.0	0.61	4.8
Intersection	Total Intersection Multiple Vehicle Crashes	2.83	22.2	6.39	50.1	9.22	72.2
Intersection	Total Intersection Crashes	3.86	30.3	7.78	61.0	11.64	91.2
	Total Crashes	4.19	32.9	8.57	67.1	12.76	100.0


Table 7. Pr	redicted Five La	e or Fewer Segm	ent Crash Type l	Distribution (Section 1)
-------------	------------------	-----------------	------------------	--------------------------

Note: *Fatal and Injury Crashes* and *Property Damage Only Crashes* do not necessarily sum up to *Total Crashes* because the distribution of these three crashes had been derived independently.

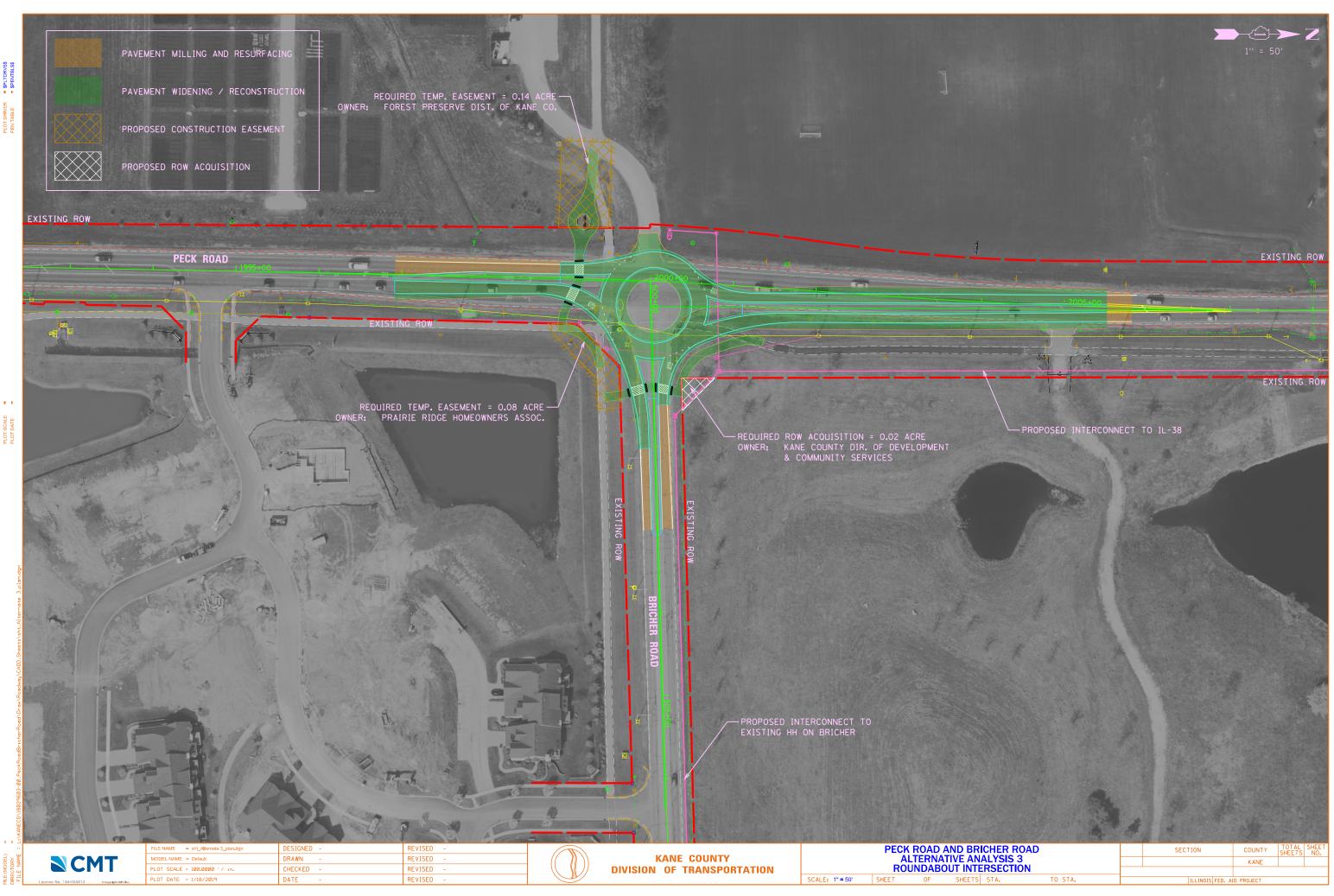

Appendix C

Sight Distance Exhibits



Appendix D

Alternative Exhibits



USER NAME PLOT SCALE PLOT DATE

= \$PEI

. . USER NAME PLOT SCALE PLOT DATE

PLO.

. . . R NAME SCALE

PLOT

Appendix E

Alternative Cost Exhibits

Peck Rd. and Bricher Rd. - Alternate 1

Phase I Engineering

Preliminary Engineer's Opinion of Probable Construction Cost

Date: Route: Section:	1/22/2019 Peck Road -	Designer: City/County: Base Year:	CMT-AURORA Geneva/St.Charles 2019
	Work Classification		Estimated Costs
1	Clearing, Minor Removal Items	\$	31,200
2	Earthwork	\$	11,400
3	Erosion Control and Landscaping	\$	7,100
4	Drainage	\$	-

1	Clearing, Minor Removal Items	\$ 31,200
2	Earthwork	\$ 11,400
3	Erosion Control and Landscaping	\$ 7,100
4	Drainage	\$ -
5	Subbase, Base, Surface, Shoulders	\$ 119,600
6	Marking and Signing	\$ 12,200
7	Guardrail, Roadside Safety	\$ -
8	Traffic Signals and Roadway Lighting	\$ 361,800
9	Detours, Temporary Traffic Control - Roadway	\$ 12,200
10	Railroad Crossing Improvements	\$ -
11	Field Office and Laboratory	\$ -
12	Environmental Mitigation/Incidental Items	\$ 30,600
13	Miscellaneous Items (10% Roadway Costs)	\$ 58,700
14	Roadway Subtotal (Categories 1-13)	\$ 644,800
15	Structure Removal	\$ -
16	Major Culverts	\$ -
17	Bridges	\$ -
18	Structures for Detours and Temporary Traffic Control	\$ -
19	Miscellaneous Items (10% Structure Costs)	\$ -
20	Structure Subtotal (Categories 15-19)	\$ -
21	Roadway and Structure Subtotal (Lines 14 and 20)	\$ 644,800
22	Contingencies (15% of Line 21)	\$ 96,800
23	Total Construction Cost (Lines 21 and 22)	\$ 741,600
24	Utility Adjustments	\$ -
25	Land Acquisition and Relocations	\$ -
26	Preliminary Engineering (Actual per Agreement)	\$ 134,173
27	Design Engineering (10% of Line 23)	\$ 169,055
28	Construction Engineering (10% of Line 23)	\$ 74,200
29	Total Project Cost (Lines 23-28)	\$ 1,119,028

Based on IDOT BDE MANUAL FIGURE 65-1.B

All values rounded to nearest \$100 |Miscellaenous Items = Unknown Knowns, Contigency = Unknown Unknowns

Peck Rd. and Bricher Rd. - Alternate 2

Phase I Engineering

Preliminary Engineer's Opinion of Probable Construction Cost

Date:	1/22/2019	Designer:	CMT-AURORA
Route:	Peck Road	City/County:	Geneva/St.Charles
Section:	-	Base Year:	2019

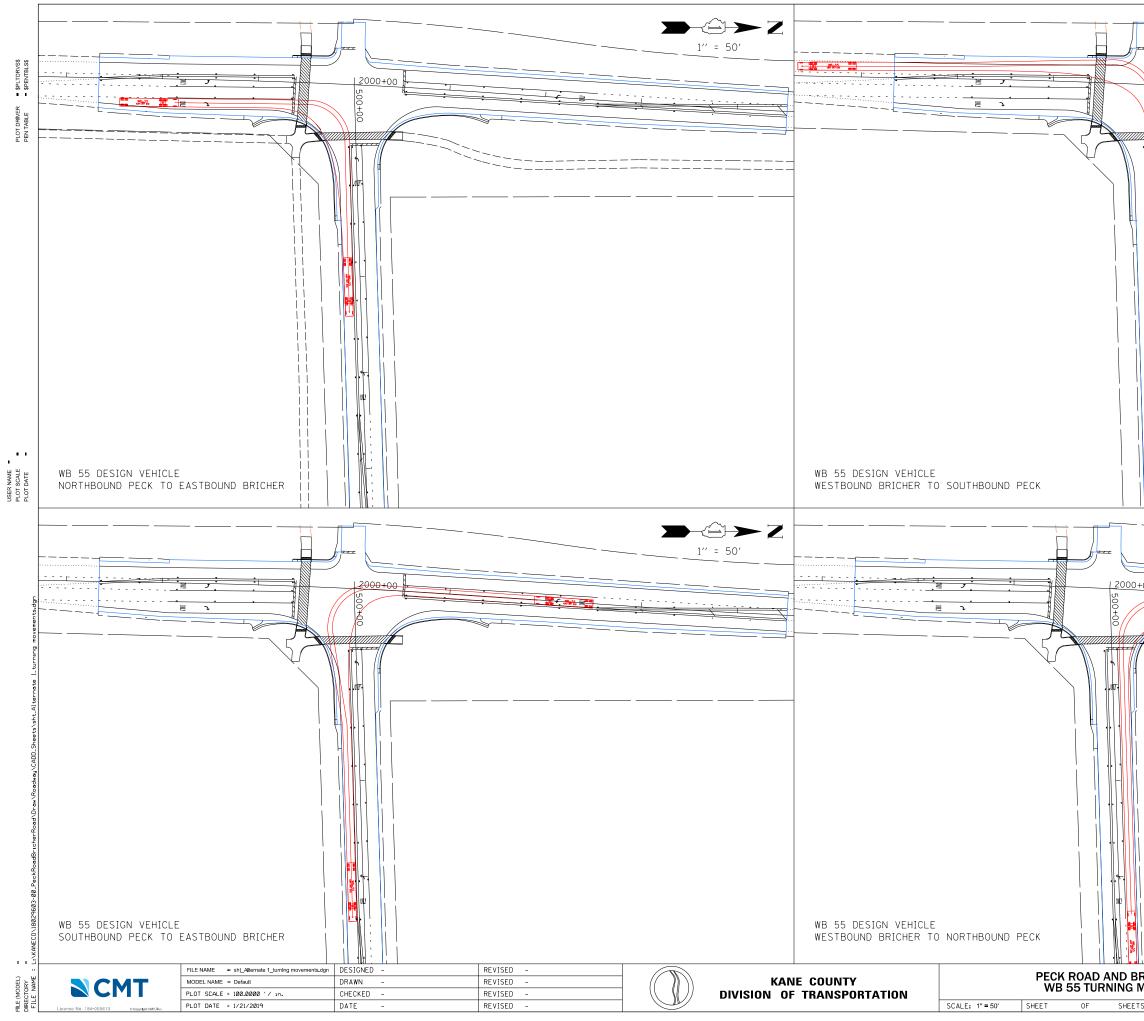
	Work Classification	Estimated	Costs
1	Clearing, Minor Removal Items	\$	58,800
2	Earthwork	\$	31,500
3	Erosion Control and Landscaping	\$	15,800
4	Drainage	\$	-
5	Subbase, Base, Surface, Shoulders	\$	306,700
6	Marking and Signing	\$	16,300
7	Guardrail, Roadside Safety	\$	-
8	Traffic Signals and Roadway Lighting	\$	365,900
9	Detours, Temporary Traffic Control - Roadway	\$	33,300
10	Railroad Crossing Improvements	\$	-
11	Field Office and Laboratory	\$	-
12	Environmental Mitigation/Incidental Items	\$	50,500
13	Miscellaneous Items (10% Roadway Costs)	\$	87,900
14	Roadway Subtotal (Categories 1-13)	\$	966,700
15	Structure Removal	\$	-
16	Major Culverts	\$	-
17	Bridges	\$	-
18	Structures for Detours and Temporary Traffic Control	\$	-
19	Miscellaneous Items (10% Structure Costs)	\$	-
20	Structure Subtotal (Categories 15-19)	\$	-
21	Roadway and Structure Subtotal (Lines 14 and 20)	\$	966,700
22	Contingencies (15% of Line 21)	\$	145,100
23	Total Construction Cost (Lines 21 and 22)	\$	1,111,800
24	Utility Adjustments	\$	-
25	Land Acquisition and Relocations	\$	-
26	Preliminary Engineering (Actual per Agreement)	\$	134,173
27	Design Engineering (10% of Line 23)	\$	169,055
28	Construction Engineering (10% of Line 23)	\$	111,200
29	Total Project Cost (Lines 23-28)	\$	1,526,228

All values rounded to nearest \$100 |Miscellaenous Items = Unknown Knowns, Contigency = Unknown Unknowns

Peck Rd. and Bricher Rd. - Alternate 3

Phase I Engineering

Preliminary Engineer's Opinion of Probable Construction Cost


Date:	1/22/2019	Designer:	CMT-AURORA
Route:	Peck Road	City/County:	Geneva/St.Charles
Section:	-	Base Year:	2019

	Work Classification	Estimated Cost	S
1	Clearing, Minor Removal Items	\$	93,900
2	Earthwork	\$	114,100
3	Erosion Control and Landscaping	\$	26,400
4	Drainage	\$	84,400
5	Subbase, Base, Surface, Shoulders	\$	443,800
6	Marking and Signing	\$	16,500
7	Guardrail, Roadside Safety	\$	-
8	Traffic Signals and Roadway Lighting	\$	212,000
9	Detours, Temporary Traffic Control - Roadway	\$	16,900
10	Railroad Crossing Improvements	\$	-
11	Field Office and Laboratory	\$	-
12	Environmental Mitigation/Incidental Items	\$	54,900
13	Miscellaneous Items (10% Roadway Costs)	\$	106,300
14	Roadway Subtotal (Categories 1-13)	\$	1,169,200
15	Structure Removal	\$	-
16	Major Culverts	\$	-
17	Bridges	\$	-
18	Structures for Detours and Temporary Traffic Control	\$	-
19	Miscellaneous Items (10% Structure Costs)	\$	-
20	Structure Subtotal (Categories 15-19)	\$	-
21	Roadway and Structure Subtotal (Lines 14 and 20)	\$	1,169,200
22	Contingencies (15% of Line 21)	\$	175,400
23	Total Construction Cost (Lines 21 and 22)	\$	1,344,600
24	Utility Adjustments	\$	-
25	Land Acquisition and Relocations	\$	2,000
26	Preliminary Engineering (Actual per Agreement)	\$	134,173
27	Design Engineering (10% of Line 23)	\$	169,055
28	Construction Engineering (10% of Line 23)	\$	134,500
29	Total Project Cost (Lines 23-28)	\$	1,784,328

All values rounded to nearest \$100 |Miscellaenous Items = Unknown Knowns, Contigency = Unknown Unknowns

Appendix F

Turn Templates for Traditional Intersection

		· · · · · · · · · · · · · · · · · · ·
		– Ĉ→ Z
		1'' = 50'
	·	
RICHER ROAD MOVEMENTS	SECTION	COUNTY TOTAL SHEET SHEETS NO.
		KANE
S STA. TO STA.	ILLINOIS FED. AID	PROJECT